Content deleted Content added
→Moments: fixed some links |
m v2.04b - Bot T5 CW#90 - Fix errors for CW project (Internal link written as an external link) |
||
Line 66:
=== Transformations ===
QPD transformations are governed by a general property of quantile functions: for any [[quantile function]] <math>x=Q(y)</math> and increasing function <math>t(x), x=t^{-1} (Q(y))</math> is a [[quantile function]].<ref>Gilchrist, W., 2000. Statistical modelling with quantile functions. CRC Press.</ref> For example, the [[quantile function]] of the [[normal distribution]], <math>x=\mu+\sigma \Phi^{-1} (y)</math>, is a QPD by the Keelin and Powley definition. The natural logarithm, <math>t(x)=\ln(x-b_l)</math>, is an increasing function, so <math>x=b_l+e^{\mu+\sigma \Phi^{-1} (y)}</math> is the [[quantile function]] of the [[Log-normal distribution|lognormal distribution]] with lower bound <math>b_l</math>. Importantly, this transformation converts an unbounded QPD into a semi-bounded QPD. Similarly, applying this log transformation to the [
Line 87:
* The quantile function of the [[logistic distribution]], <math>x=\mu+s \ln(y/(1-y) )</math>.
* The unbounded [[metalog distribution]], which is a power series expansion of the <math>\mu</math> and <math>s</math> parameters of the logistic quantile function.
* The [
* The [
* The Simple Q-Normal distribution<ref>[[doi:10.1287/deca.1110.0213|Keelin, T.W., and Powley, B.W. (2011), pp. 208–210]]</ref>
* The metadistributions, including the meta-normal<ref>[[doi:10.1287/deca.2016.0338|Keelin, T.W. (2016), p. 253.]]</ref>
Line 96:
== Applications ==
The original applications of QPDs were by decision analysts wishing to conveniently convert expert-assessed quantiles (e.g., 10th, 50th, and 90th quantiles) into smooth continuous probability distributions. QPDs have also been used to fit output data from simulations in order to represent those outputs (both CDFs and PDFs) as closed-form continuous distributions.<ref>[[doi:10.1287/deca.2016.0338|Keelin, T.W. (2016), Section 6.2.2, pp. 271–274.]]</ref> Used in this way, they are typically more stable and smoother than histograms. Similarly, since QPDs can impose fewer shape constraints than traditional distributions, they have been used to fit a wide range of empirical data in order to represent those data sets as continuous distributions (e.g., reflecting bimodality that may exist in the data in a straightforward manner<ref>[[doi:10.1287/deca.2016.0338|Keelin, T.W. (2016), Section 6.1.1, Figure 10, pp 266–267.]]</ref>). Quantile parameterization enables a closed-form QPD representation of known distributions whose CDFs otherwise have no closed-form expression. Keelin et al. (2019)<ref>[https://dl.acm.org/doi/abs/10.5555/3400397.3400643 Keelin, T.W., Chrisman, L. and Savage, S.L. (2019). “The metalog distributions and extremely accurate sums of lognormals in closed form.” WSC '19: Proceedings of the Winter Simulation Conference. 3074–3085.]</ref> apply this to the sum of independent identically distributed lognormal distributions, where quantiles of the sum can be determined by a large number of simulations. Nine such quantiles are used to parameterize a semi-bounded metalog distribution that runs through each of these nine quantiles exactly. QPDs have also been applied to assess the risks of asteroid impact,<ref>[[doi:10.1111/risa.12453|Reinhardt, J.D., Chen, X., Liu, W., Manchev, P. and Pate-Cornell, M.E. (2016). “Asteroid risk assessment: A probabilistic approach.” Risk Analysis. 36 (2): 244–261]]</ref> cybersecurity,<ref name="Faber" /><ref>[https://www.sciencedirect.com/science/article/pii/S0167404819300604 Wang, J., Neil, M. and Fenton, N. (2020). “A Bayesian network approach for cybersecurity risk assessment implementing and extending the FAIR model.” Computers & Security. 89: 101659.]</ref> biases in projections of oil-field production when compared to observed production after the fact,<ref>[https://www.onepetro.org/journal-paper/SPE-195914-PA Bratvold, R.B., Mohus, E., Petutschnig, D. and Bickel, E. (2020). “Production forecasting: Optimistic and overconfident—Over and over again.” Society of Petroleum Engineers. doi:10.2118/195914-PA.]</ref> and future Canadian population projections based on combining the probabilistic views of multiple experts.<ref>[https://library.oapen.org/bitstream/handle/20.500.12657/42565/2020_Book_DevelopmentsInDemographicForec.pdf?sequence=1#page=51 Dion, P., Galbraith, N., Sirag, E. (2020). “Using expert elicitation to build long-term projection assumptions.” In Developments in Demographic Forecasting, Chapter 3, pp. 43–62. Springer]</ref> See [
|