Linear model: Difference between revisions

Content deleted Content added
Linear regression models: epsilon → varepsilon
Line 1:
{{distinguishDistinguish|linear model of innovation}}
 
In [[statistics]], the term '''linear model''' is used in different ways according to the context. The most common occurrence is in connection with regression models and the term is often taken as synonymous with [[linear regression]] model. However, the term is also used in [[time series analysis]] with a different meaning. In each case, the designation "linear" is used to identify a subclass of models for which substantial reduction in the complexity of the related [[statistical theory]] is possible.
Line 10:
:<math>Y_i = \beta_0 + \beta_1 \phi_1(X_{i1}) + \cdots + \beta_p \phi_p(X_{ip}) + \varepsilon_i \qquad i = 1, \ldots, n </math>
 
where <math> \phi_1, \ldots, \phi_p </math> may be [[Nonlinear system|nonlinear]] functions. In the above, the quantities <math>\varepsilon_i</math> are [[Randomrandom variable|random variables]]s representing errors in the relationship. The "linear" part of the designation relates to the appearance of the [[regression coefficient]]s, <math>\beta_j</math> in a linear way in the above relationship. Alternatively, one may say that the predicted values corresponding to the above model, namely
:<math>\hat{Y}_i = \beta_0 + \beta_1 \phi_1(X_{i1}) + \cdots + \beta_p \phi_p(X_{ip}) \qquad (i = 1, \ldots, n), </math>
are linear functions of the <math>\beta_j</math>.
Line 43:
 
==References==
{{Reflist}}
<references/>
 
{{Statistics}}
{{Authority control}}
 
[[Category:Regression models]]