Content deleted Content added
m convert HTML entities, punctuation (via WP:JWB) |
Elysia (AR) (talk | contribs) m ref formatting + journal link |
||
Line 15:
where <math>\langle \cdot, \cdot \rangle</math> here denotes the inner product in <math>L^2</math>. One approach to estimating <math>\beta_0</math> and <math>\beta(\cdot)</math> is to expand the centered covariate <math>X^c(\cdot)</math> and the coefficient function <math>\beta(\cdot)</math> in the same [[Basis function|functional basis]], for example, [[B-spline]] basis or the eigenbasis used in the [[Karhunen–Loève theorem|Karhunen–Loève expansion]]. Suppose <math>\{\phi_k\}_{k=1}^\infty</math> is an [[orthonormal basis]] of <math>L^2</math>. Expanding <math>X^c</math> and <math>\beta</math> in this basis, <math>X^c(\cdot) = \sum_{k=1}^\infty x_k \phi_k(\cdot)</math>, <math>\beta(\cdot) = \sum_{k=1}^\infty \beta_k \phi_k(\cdot)</math>, model ({{EquationNote|2}}) becomes
<math display="block">Y = \beta_0 + \sum_{k=1}^\infty \beta_k x_k +\varepsilon.</math>
For implementation, regularization is needed and can be done through truncation, <math>L^2</math> penalization or <math>L^1</math> penalization.<ref name=morr:15>
Adding multiple functional and scalar covariates, model ({{EquationNote|2}}) can be extended to
{{NumBlk|::|<math display="block">Y = \sum_{k=1}^q Z_k\alpha_k + \sum_{j=1}^p \int_{\mathcal{T}_j} X_j^c(t) \beta_j(t) \,dt + \varepsilon,</math>|{{EquationRef|3}}}}
where <math>Z_1,\ldots,Z_q</math> are scalar covariates with <math>Z_1=1</math>, <math>\alpha_1,\ldots,\alpha_q</math> are regression coefficients for <math>Z_1,\ldots,Z_q</math>, respectively, <math>X^c_j</math> is a centered functional covariate given by <math>X_j^c(\cdot) = X_j(\cdot) - \mathbb{E}(X_j(\cdot))</math>, <math>\beta_j</math> is regression coefficient function for <math>X_j^c(\cdot)</math>, and <math>\mathcal{T}_j</math> is the ___domain of <math>X_j</math> and <math>\beta_j</math>, for <math>j=1,\ldots,p</math>. However, due to the parametric component <math>\alpha</math>, the estimation methods for model ({{EquationNote|2}}) cannot be used in this case<ref name=wang:16>
=== Functional linear models with functional responses ===
|