Probability distribution fitting: Difference between revisions

Content deleted Content added
m date format audit, minor formatting
Asitgoes (talk | contribs)
Line 51:
More generally one can raise the data to a power ''p'' in order to fit symmetrical distributions to data obeying a distribution of any skewness, whereby ''p'' < 1 when the skewness is positive and ''p'' > 1 when the skewness is negative. The optimal value of ''p'' is to be found by a [[numerical method]]. The numerical method may consist of assuming a range of ''p'' values, then applying the distribution fitting procedure repeatedly for all the assumed ''p'' values, and finally selecting the value of ''p'' for which the sum of squares of deviations of calculated probabilities from measured frequencies ([[Chi-squared test|chi squared]]) is minimum, as is done in [[CumFreq]].
 
The generalization enhances the flexibility of probability distributions and increases their applicability in distribution fitting. <ref>Software for Generalized and Composite Probability Distributions. International Journal of Mathematical and Computational Methods, 4, 1-9 [https://www.iaras.org/iaras/home/caijmcm/software-for-generalized-and-composite-probability-distributions] or [https://www.waterlog.info/pdf/MathJournal.pdf]</ref>
 
== Inversion of skewness ==