Content deleted Content added
Citation bot (talk | contribs) Alter: pages, title. Removed access-date with no URL. Formatted dashes. | Use this bot. Report bugs. | Suggested by Grimes2 | Category:CS1 errors: access-date without URL | via #UCB_Category 1182/1764 |
|||
Line 31:
According to the [[first law of thermodynamics]], which deals with the [[conservation of energy]], the loss <math>\delta q</math> of heat will result in a decrease in the [[internal energy]] of the [[thermodynamic system]]. Thermodynamic entropy provides a comparative measure of the amount of decrease in internal energy and the corresponding increase in internal energy of the surroundings at a given temperature. In many cases, a visualization of the second law is that energy of all types changes from being localized to becoming dispersed or spread out, if it is not hindered from doing so. When applicable, entropy increase is the quantitative measure of that kind of a spontaneous process: how much energy has been effectively lost or become unavailable, by dispersing itself, or spreading itself out, as assessed at a specific temperature. For this assessment, when the temperature is higher, the amount of energy dispersed is assessed as 'costing' proportionately less. This is because a hotter body is generally more able to do thermodynamic work, other factors, such as internal energy, being equal. This is why a steam engine has a hot firebox.
The second law of thermodynamics deals only with changes of entropy (<math>\Delta S</math>). The absolute entropy (S) of a system may be determined using the [[third law of thermodynamics]], which specifies that the entropy of all perfectly crystalline substances is zero at the [[absolute zero]] of temperature.<ref>{{cite book |last1=Atkins |first1=Peter |last2=de Paula |first2=Julio |title=Atkins' Physical Chemistry |date=2006 |publisher=W. H. Freeman |isbn=0-7167-8759-8 |pages=
===Statistical mechanics and information entropy===
Line 84:
*'''An indicator of irreversibility''': fitting closely with the 'unavailability of energy' interpretation is the 'irreversibility' interpretation. Spontaneous thermodynamic processes are irreversible, in the sense that they do not spontaneously undo themselves. Thermodynamic processes artificially imposed by agents in the surroundings of a body also have irreversible effects on the body. For example, when [[James Prescott Joule]] used a device that delivered a measured amount of mechanical work from the surroundings through a paddle that stirred a body of water, the energy transferred was received by the water as heat. There was scarce expansion of the water doing thermodynamic work back on the surroundings. The body of water showed no sign of returning the energy by stirring the paddle in reverse. The work transfer appeared as heat, and was not recoverable without a suitably cold reservoir in the surroundings. Entropy gives a precise account of such irreversibility.
* [[Entropy (energy dispersal)|'''Dispersal''']]: [[Edward A. Guggenheim]] proposed an ordinary language interpretation of entropy that may be rendered as 'dispersal of modes of microscopic motion throughout their accessible range'.<ref name="Dugdale 101">Dugdale, J.S. (1996). ''Entropy and its Physical Meaning'', Taylor & Francis, London, {{ISBN|0748405682}}, Dugdale cites only Guggenheim, on page 101.</ref><ref name="Guggenheim1949">Guggenheim, E.A. (1949), Statistical basis of thermodynamics, ''Research: A Journal of Science and its Applications'', '''2''', Butterworths, London, pp. 450–454; p. 453, "If instead of entropy one reads number of accessible states, or spread, the physical significance becomes clear."</ref> Later, along with a criticism of the idea of entropy as 'disorder', the dispersal interpretation was advocated by [[Frank L. Lambert]],<ref name=Lambert/><ref name="Lambert2005">{{cite journal |last1=Kozliak |first1=Evguenii I. |last2=Lambert |first2=Frank L.|date=2005 |title=
:The interpretation properly refers to dispersal in abstract microstate spaces, but it may be loosely visualised in some simple examples of spatial spread of matter or energy. If a partition is removed from between two different gases, the molecules of each gas spontaneously disperse as widely as possible into their respectively newly accessible volumes; this may be thought of as mixing. If a partition, that blocks heat transfer between two bodies of different temperatures, is removed so that heat can pass between the bodies, then energy spontaneously disperses or spreads as heat from the hotter to the colder.
|