Modular lambda function: Difference between revisions

Content deleted Content added
Line 108:
:<math>\lambda^*(x) - \lambda^*(9x) = 2[\lambda^*(x)\lambda^*(9x)]^{1/4} - 2[\lambda^*(x)\lambda^*(9x)]^{3/4}</math>
 
:<math>\tan\{2\arctan[\lambda^*(x)]\}^{1/2} - \tan\{2\arctan[\lambda^*(25x)]\}^{1/2} = </math>
:<math>\left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/2}-\left[\frac{2\lambda^*(25x)}{1-\lambda^*(25x)^2}\right]^{1/2} = 2\left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\left[\frac{2\lambda^*(25x)}{1-\lambda^*(25x)^2}\right]^{1/12} + 2\left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{5/12}\left[\frac{2\lambda^*(25x)}{1-\lambda^*(25x)^2}\right]^{5/12} </math>
 
:<math>= 2\tan\{2\arctan[\lambda^*(x)]\}^{1/12}\tan\{2\arctan[\lambda^*(25x)]\}^{1/12} + 2\tan\{2\arctan[\lambda^*(x)]\}^{5/12}\tan\{2\arctan[\lambda^*(25x)]\}^{5/12} </math>
 
These are the relations between lambda-star and the Ramanujan-G-function: