Content deleted Content added
mNo edit summary |
mNo edit summary |
||
Line 154:
==Where randomness helps==
When the model of computation is restricted to [[Turing machine]]s, it is currently an open question whether the ability to make random choices allows some problems to be solved in polynomial time that cannot be solved in polynomial time without this ability; this is the question of whether P = BPP. However, in other contexts, there are specific examples of problems where randomization yields strict improvements.
* Based on the initial motivating example: given an exponentially long string of 2<sup>''k''</sup> characters, half a's and half b's, a [[random
* The natural way of carrying out a numerical computation in [[embedded systems]] or [[cyber-physical system]]s is to provide a result that approximates the correct one with high probability (or Probably Approximately Correct Computation (PACC)). The hard problem associated with the evaluation of the discrepancy loss between the approximated and the correct computation can be effectively addressed by resorting to randomization<ref>{{citation|title=Intelligence for Embedded Systems|first1=Cesare|last1=Alippi|publisher=Springer|year=2014|isbn=978-3-319-05278-6}}.</ref>
* In [[communication complexity]], the equality of two strings can be verified to some reliability using <math>\log n</math> bits of communication with a randomized protocol. Any deterministic protocol requires <math>\Theta(n)</math> bits if defending against a strong opponent.<ref>{{citation|title=Communication Complexity|first1=Eyal|last1=Kushilevitz|first2=Noam|last2=Nisan|publisher=Cambridge University Press|year=2006|isbn=9780521029834}}. For the deterministic lower bound see p. 11; for the logarithmic randomized upper bound see pp. 31–32.</ref>
|