Content deleted Content added
m rvv |
Tags: Mobile edit Mobile web edit Advanced mobile edit |
||
Line 10:
The logarithmic convolution can be related to the ordinary [[convolution]] by changing the [[Variable (mathematics)|variable]] from <math>t</math> to <math>v = \log t</math>:
: <math>
s *_l r(t) & = \int_0^\infty s \left(\frac{t}{a}\right)r(a) \, \frac{da}{a} & =
\int_{-\infty}^\infty s\left(\frac{t}{e^u}\right) r(e^u) \, du
\end{align}</math>
Define <math>f(v) = s(e^v)</math> and <math>g(v) = r(e^v)</math> and let <math>v = \log t</math>, then
:<math> s *_l r(v) = f * g(v) = g * f(v) = r *_l s(v).
{{PlanetMath attribution|id=5995|title=logarithmic convolution}}
|