Logarithmic convolution: Difference between revisions

Content deleted Content added
DaBler (talk | contribs)
m rvv
Tags: Mobile edit Mobile web edit Advanced mobile edit
Line 10:
The logarithmic convolution can be related to the ordinary [[convolution]] by changing the [[Variable (mathematics)|variable]] from <math>t</math> to <math>v = \log t</math>:
 
: <math> \begin{align}
s *_l r(t) & = \int_0^\infty s \left(\frac{t}{a}\right)r(a) \, \frac{da}{a} =\\
& =
\int_{-\infty}^\infty s\left(\frac{t}{e^u}\right) r(e^u) \, du </math>\\
 
:<math>& = \int_{-\infty}^\infty s \left(e^{\log t - u}\right)r(e^u) \, du.</math>
\end{align}</math>
 
Define <math>f(v) = s(e^v)</math> and <math>g(v) = r(e^v)</math> and let <math>v = \log t</math>, then
 
:<math> s *_l r(v) = f * g(v) = g * f(v) = r *_l s(v).\, </math>
 
{{PlanetMath attribution|id=5995|title=logarithmic convolution}}