Content deleted Content added
Line 135:
:<math>\lambda^*(25) = \frac{1}{\sqrt{2}}(\sqrt{5}-2)(3-2\sqrt[4]{5})</math>
:<math>\lambda^*(33) = \sin\{\frac{1}{2}\arcsin[(10-3\sqrt{11})(2-\sqrt{3})^3]\}</math>
:<math>\lambda^*(37) = \sin\{\frac{1}{2}\arcsin[(\sqrt{37}-6)^3]\}</math>
:<math>\lambda^*(45) = \sin\{\frac{1}{2}\arcsin[(4-\sqrt{15})^2(\sqrt{5}-2)^3]\}</math>
:<math>\lambda^*(49) = \sin\{\frac{1}{2}\arcsin[\frac{1}{8}(4\sqrt{7}+9-3\sqrt{8\sqrt{7}+21})^3]\}</math>
Lambda-star-values of integer numbers of 4n-2-type:
Line 149 ⟶ 157:
:<math>\lambda^*(22) = (10-3\sqrt{11})(3\sqrt{11}-7\sqrt{2})</math>
:<math>\lambda^*(26) = (\sqrt{26}+5)(\sqrt{2}-1)^2\tan[\frac{\pi}{4}-\arctan(\frac{1}{3}\sqrt[3]{3\sqrt{3}+\sqrt{26}}-\frac{1}{3}\sqrt[3]{3\sqrt{3}-\sqrt{26}}+\frac{1}{6}\sqrt{26}-\frac{1}{2}\sqrt{2})]^4</math>▼
:<math>\lambda^*(30) = \tan\{\frac{1}{2}\arctan[(\sqrt{10}-3)^2(\sqrt{5}-2)^2]\}</math>
▲:<math>\lambda^*(
:<math>\lambda^*(42) = \tan\{\frac{1}{2}\arctan[(2\sqrt{7}-3\sqrt{3})^2(2\sqrt{2}-\sqrt{7})^2]\}</math>
:<math>\lambda^*(46) = \tan\{\frac{1}{2}\arctan[\frac{1}{64}(3+\sqrt{2}-\sqrt{6\sqrt{2}+7})^6]\}</math>
:<math>\lambda^*(58) = (13\sqrt{58}-99)(\sqrt{2}-1)^6</math>
:<math>\lambda^*(70) = \tan\{\frac{1}{2}\arctan[(\sqrt{5}-2)^4(\sqrt{2}-1)^6]\}</math>
Lambda-star-values of integer numbers of 4n-1-type:
Line 169 ⟶ 185:
:<math>\lambda^*(27) = \frac{1}{16\sqrt{2}}(\sqrt{3}-1)^3[\frac{1}{3}\sqrt{3}(\sqrt[3]{4}-\sqrt[3]{2}+1)-\sqrt[3]{2}+1]^4</math>
:<math>\lambda^*(39) = \sin\{\frac{1}{2}\arcsin[\frac{1}{16}(6-\sqrt{13}-3\sqrt{6\sqrt{13}-21})]\}</math>
:<math>\lambda^*(55) = \sin\{\frac{1}{2}\arcsin[\frac{1}{512}(3\sqrt{5}-3-\sqrt{6\sqrt{5}-2})^3]\}</math>
Lambda-star-values of integer numbers of 4n-type:
|