Content deleted Content added
m Open access bot: doi added to citation with #oabot. |
m Open access bot: doi added to citation with #oabot. |
||
Line 61:
The initial setting of the simulated [[Subduction|subduction zone]] model is confined by two pistons. The piston connected to the overriding plate is locked, while the piston linking to subducting plate is subjected to a constant rate of compression.<ref name=":113" /> More importantly, there is a relatively thin [[Volcanic arc|magmatic arc]] and pre-existing fault dipping towards the subducting plate at the overriding plate.<ref name=":113" /> The detachment of the pre-existing fault occurs when buoyant [[continental margin]] is in contact with the overriding plate.<ref name=":113" /> It is because the buoyant margin resists [[subduction]] and significantly increases the [[Friction|frictional force]] in the contact region.<ref name=":113" /> The subduction then stops. Subsequently, the new subducting slab develops at an overriding plate with the continuous compression.<ref name=":113" /> The new developing slab eventually penetrates and breaks the old slab.<ref name=":113" /> A new subduction zone is formed with an opposite polarity to the previous one.<ref name=":113" />
In reality, the magmatic arc is a relatively weak zone at the overriding plate because it has a thin lithosphere and is further weakened by high heat flow<ref>{{Cite journal|last=Currie|first=Claire A.|last2=Hyndman|first2=Roy D.|date=2006-08-01|title=The thermal structure of subduction zone back arcs|journal=Journal of Geophysical Research: Solid Earth|language=en|volume=111|issue=B8|pages=B08404|doi=10.1029/2005JB004024|issn=2156-2202|bibcode=2006JGRB..111.8404C|doi-access=free}}</ref><ref>{{Cite journal|last=Currie|first=C. A|last2=Wang|first2=K|last3=Hyndman|first3=Roy D|last4=He|first4=Jiangheng|date=2004-06-30|title=The thermal effects of steady-state slab-driven mantle flow above a subducting plate: the Cascadia subduction zone and backarc|journal=Earth and Planetary Science Letters|volume=223|issue=1–2|pages=35–48|doi=10.1016/j.epsl.2004.04.020|bibcode=2004E&PSL.223...35C}}</ref> and hot fluid.<ref>{{Cite journal|last=Arcay|first=D.|last2=Doin|first2=M.-P.|last3=Tric|first3=E.|last4=Bousquet|first4=R.|last5=de Capitani|first5=C.|date=2006-02-01|title=Overriding plate thinning in subduction zones: Localized convection induced by slab dehydration|journal=Geochemistry, Geophysics, Geosystems|language=en|volume=7|issue=2|pages=Q02007|doi=10.1029/2005GC001061|issn=1525-2027|bibcode=2006GGG.....7.2007A}}</ref><ref>{{Cite journal|last=Honda|first=Satoru|last2=Yoshida|first2=Takeyoshi|date=2005-01-01|title=Application of the model of small-scale convection under the island arc to the NE Honshu subduction zone|journal=Geochemistry, Geophysics, Geosystems|language=en|volume=6|issue=1|pages=Q01002|doi=10.1029/2004GC000785|issn=1525-2027|bibcode=2005GGG.....6.1002H}}</ref> Pre-existing faults in this simulation are also common in the magmatic arc.<ref>{{Cite journal|last=Toth|first=John|last2=Gurnis|first2=Michael|date=1998-08-10|title=Dynamics of subduction initiation at preexisting fault zones|journal=Journal of Geophysical Research: Solid Earth|language=en|volume=103|issue=B8|pages=18053–18067|doi=10.1029/98JB01076|issn=2156-2202|bibcode=1998JGR...10318053T|url=https://authors.library.caltech.edu/38328/1/1998_TothGurnis_JGR.pdf|doi-access=free}}</ref> This experiment is a successful analogy to subduction polarity reversal happening at Kamchatka in early Eocene<ref name=":54" /><ref>{{Cite journal|last=Konstantinovskaia|first=Elena A|date=2000-10-15|title=Geodynamics of an Early Eocene arc–continent collision reconstructed from the Kamchatka Orogenic Belt, NE Russia|journal=Tectonophysics|volume=325|issue=1–2|pages=87–105|doi=10.1016/S0040-1951(00)00132-3|bibcode=2000Tectp.325...87K}}</ref> and the active example at Taiwan region<ref name=":113" /><ref name=":03" /> as well as at Timor.<ref>{{cite journal|last1=Silver|first1=Eli A.|last2=Reed|first2=Donald|last3=McCaffrey|first3=Robert|last4=Joyodiwiryo|first4=Yoko|title=Back arc thrusting in the Eastern Sunda Arc, Indonesia: A consequence of arc-continent collision|journal=Journal of Geophysical Research: Solid Earth|date=1983-09-10|volume=88|issue=B9|pages=7429–7448|doi=10.1029/JB088iB09p07429|bibcode=1983JGR....88.7429S}}</ref><ref>{{Cite journal|last=Snyder|first=D. B.|last2=Prasetyo|first2=H.|last3=Blundell|first3=D. J.|last4=Pigram|first4=C. J.|last5=Barber|first5=A. J.|last6=Richardson|first6=A.|last7=Tjokosaproetro|first7=S.|date=1996-02-01|title=A dual doubly vergent orogen in the Banda Arc continent-arc collision zone as observed on deep seismic reflection profiles|journal=Tectonics|language=en|volume=15|issue=1|pages=34–53|doi=10.1029/95TC02352|issn=1944-9194|bibcode=1996Tecto..15...34S}}</ref>
[[File:Lithospheric_break-up_model_setup.svg|thumb|444x444px|A. Chemenda's Experiment setup of lithosphere break-up model: White colour indicates the oceanic plate ( Higher density) ; Brown colour indicates the continental plate ( Lower density) ;Green colour shows the pre-existing fault ; The plates represented by hydrocarbons floats at the asthenosphere represented by water.|center]][[File:Lithoshperic_break-up.gif|thumb|444x444px|The evolution diagram showing how the subduction reversal initiated by a pre-existing fault at the overriding plate. 1: Compression pushing ; 2: New slab develops with the failure of the fault ; 3: New slab penetrates ; 4: New slab breaks the old slab|center]]
|