Localization (commutative algebra): Difference between revisions

Content deleted Content added
fix a symbol; math mode
Module properties: complete a displyed formula; more math mode
Line 137:
 
===Module properties===
If {{mvar|M}} is a [[submodule]] of an {{mvar|R}}-module {{mvar|N}}, and {{mvar|S}} is a multiplicative set in {{mvar|R}}, one has <math>S^{-1}M\subseteq S^{-1}N.</math> This implies that, if <math>f:\colon M\to N</math> is an [[injective]] [[module homomorphism]], then
:<math>S^{-1}R\otimes_R f : \quad S^{-1}R\otimes_R M\to S^{-1}R\otimes_R N</math>
is also an injective homomorphism.
 
Since the tensor product is a [[right exact functor]], this implies that localization by {{mvar|S}} maps [[exact sequence]]s of {{mvar|R}}-modules to exact sequences of {{<math|''>S''^{{sup|–1}-1}''R''}}</math>-modules. In other words, localization is an [[exact functor]], and {{<math|''>S''^{{sup|–1}-1}R}}</math> is a [[flat module|flat {{mvar|R}}-module]].
 
This flatness and the fact that localization solves a [[universal property]] make that localization preserves many properties of modules and rings, and is compatible with solutions of other universal properties. For example, the [[natural transformation|natural map]]
Line 152:
:<math>S^{-1}(\operatorname{Ann}_R(M)) = \operatorname{Ann}_{S^{-1}R}(S^{-1}M),</math>
where <math>\operatorname{Ann}</math> denotes [[annihilator (ring theory)|annihilator]], that is the ideal of the elements of the ring that map to zero all elements of the module.<ref>{{harvnb|Atiyah|MacDonald|loc=Proposition 3.14.}}</ref> In particular,
:<math>S^{-1} M = 0\quad \iff \quad S\cap \operatorname{Ann}_R(M) \ne \emptyset,</math>
that is, if <math>t M = 0</math> for some <math>t \in S.</math><ref>Borel, AG. 3.1</ref>
 
==Localization at primes==