Content deleted Content added
m Open access bot: hdl added to citation with #oabot. |
No edit summary |
||
Line 1:
{{More citations needed|date=December 2009}}
'''Deep reactive-ion etching''' ('''DRIE''') is a highly [[anisotropy|anisotropic]] [[etching (microfab)|etch]] process used to create deep penetration, steep-sided holes and trenches in [[wafer (semiconductor)|wafer]]s/substrates, typically with high [[aspect ratio (image)|aspect ratio]]s. It was developed for [[microelectromechanical systems]] (MEMS), which require these features, but is also used to excavate trenches for high-density [[capacitor]]s for [[dynamic random access memory|DRAM]] and more recently for creating through silicon vias ([[Through-silicon via|TSVs]]) in advanced 3D wafer level packaging technology. In DRIE, the substrate is placed inside a reactor, and several gases are introduced. A plasma is struck in the gas mixture which breaks the gas molecules into ions. The ions accelerated towards, and react with the surface of the material being etched, forming another gaseous element. This is known as the chemical part of the reactive
DRIE is a special subclass of RIE.
|