Parallel curve: Difference between revisions

Content deleted Content added
Line 53:
For example:
: ''Line'' <math>\; f(x,y)=x+y-1=0\; </math> → distance function: <math>\; h(x,y)=\frac{x+y-1}{\sqrt{2}}=d\; </math> (Hesse normalform)
: ''Circle'' <math>\; f(x,y)=x^2+y^2-1=0\;</math> → distancefunctiondistance function: <math>\; h(x,y)=\sqrt{x^2+y^2}-1=d\; .</math>
 
In general, presuming certain conditions, one can prove the existence of an [[oriented distance function]] <math>h(x,y)</math>. In practice one has to treat it numerically.<ref>E. Hartmann: [http://www.mathematik.tu-darmstadt.de/~ehartmann/cdgen0104.pdf ''Geometry and Algorithms for COMPUTER AIDED DESIGN.''] S. 81, S. 30, 41, 44.</ref> Considering parallel curves the following is true: