User:Fawly/Computational complexity of matrix multiplication: Difference between revisions

Content deleted Content added
No edit summary
No edit summary
Line 207:
 
There is a trivial lower bound of {{tmath|\omega \ge 2}}. Since any algorithm for multiplying two {{math|''n'' × ''n''}}-matrices has to process all {{math|2''n''<sup>2</sup>}} entries, there is a trivial asymptotic lower bound of {{math|Ω(''n''<sup>2</sup>)}} operations for any matrix multiplication algorithm. Thus {{tmath|2\le \omega < 2.373}}. It is unknown whether {{tmath|\omega > 2}}. The best known lower bound for matrix-multiplication complexity is {{math|Ω(''n''<sup>2</sup> log(''n''))}}, for bounded coefficient [[Arithmetic circuit complexity|arithmetic circuits]] over the real or complex numbers, and is due to [[Ran Raz]].<ref>{{cite journal | last1 = Raz | first1 = Ran | author-link = Ran Raz | year = 2002| title = On the complexity of matrix product | journal = Proceedings of the Thirty-fourth Annual ACM Symposium on Theory of Computing | pages = 144 | doi = 10.1145/509907.509932 | isbn = 1581134959 | s2cid = 9582328 }}</ref>
 
 
==Related complexities==
Line 260 ⟶ 259:
* [[Computational complexity of mathematical operations]]
* [[CYK algorithm#Valiant's algorithm|CYK algorithm, §Valiant's algorithm]]
* [[Freivalds' algorithm]], a simple [[Monte Carlo algorithm]] that, given matrices {{mvar|A}}, {{mvar|B}} and {{mvar|C}}, verifies in {{math|Θ(''n''<sup>2</sup>)}} time if {{math|''AB'' {{=}} ''C''}}.
* [[Matrix chain multiplication]]
* [[Matrix multiplication]]
* [[Matrix multiplication algorithm]]
* [[Sparse matrix-vector multiplication]]
* [[Freivalds' algorithm]], a simple [[Monte Carlo algorithm]] that, given matrices {{mvar|A}}, {{mvar|B}} and {{mvar|C}}, verifies in {{math|Θ(''n''<sup>2</sup>)}} time if {{math|''AB'' {{=}} ''C''}}.
 
==References==