User:Fawly/Computational complexity of matrix multiplication: Difference between revisions

Content deleted Content added
No edit summary
No edit summary
Line 1:
In [[theoretical computer science]], an active area of research is determining [[Analysis of algorithms|how efficient]] the operation of [[matrix multiplication]] can be performed. [[Matrix multiplication algorithm]]s are a central subroutine in theoretical and [[numerical algorithm|numerical]] algorithms for [[numerical linear algebra]] and [[optimization]], so finding the right amount of time it should take is of major practical relevance.
 
Directly applying the mathematical definition of matrix multiplication gives an algorithm that on the order of {{math|''n''<sup>3</sup>}} [[Field (mathematics)|field]] operations to multiply two {{math|''n'' × ''n''}} matrices over that field ({{math|Θ(''n''<sup>3</sup>)}} in [[big O notation]]). Surprisingly, algorithms exist that provide better running times than this straightforward "schoolbook algorithm". The first to be discovered was [[Strassen algorithm|Strassen's algorithm]], devised by [[Volker Strassen]] in 1969 and often referred to as "fast matrix multiplication". It is still unknown what the optimal number of field operations is required to multiply two square {{math|''n'' × ''n''}} matrices.

{{As of|2020|12}}, the matrix multiplication algorithm with best asymptotic complexity runs in {{math|O(''n''<sup>2.3728596</sup>)}} time, given by Josh Alman and [[Virginia Vassilevska Williams]],<ref name="aw20">
{{Citation
| last1=Alman