Content deleted Content added
Tag: Reverted |
|||
Line 93:
*The sum of two independent log-concave [[random variable]]s is log-concave. This follows from the fact that the convolution of two log-concave functions is log-concave.
*The product of two log-concave functions is log-concave. This means that [[joint distribution|joint]] densities formed by multiplying two probability densities (e.g. the [[normal-gamma distribution]], which always has a shape parameter >= 1) will be log-concave. This property is heavily used in general-purpose [[Gibbs sampling]] programs such as [[Bayesian inference using Gibbs sampling|BUGS]] and [[Just another Gibbs sampler|JAGS]], which are thereby able to use [[adaptive rejection sampling]] over a wide variety of [[conditional distribution]]s derived from the product of other distributions.
==See also==
|