Content deleted Content added
m v2.04b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation) |
|||
Line 44:
On the other hand, most simple [[rejection sampling]] methods suffer from the "[[curse of dimensionality]]", where the probability of rejection increases exponentially as a function of the number of dimensions. Metropolis–Hastings, along with other MCMC methods, do not have this problem to such a degree, and thus are often the only solutions available when the number of dimensions of the distribution to be sampled is high. As a result, MCMC methods are often the methods of choice for producing samples from [[hierarchical Bayesian model]]s and other high-dimensional statistical models used nowadays in many disciplines.
In [[multivariate distribution|multivariate]] distributions, the classic Metropolis–Hastings algorithm as described above involves choosing a new multi-dimensional sample point. When the number of dimensions is high, finding the suitable jumping distribution to use can be difficult, as the different individual dimensions behave in very different ways, and the jumping width (see above) must be "just right" for all dimensions at once to avoid excessively slow mixing. An alternative approach that often works better in such situations, known as [[Gibbs sampling]], involves choosing a new sample for each dimension separately from the others, rather than choosing a sample for all dimensions at once. That way, the problem of sampling from potentially high-dimensional space will be reduced to a collection of problems to sample from small dimensionality
==Formal derivation==
|