'''Quantum image processing''' (QIMPQIP) is primarily devoted to using [[quantum computing]] and [[quantum information processing]] to create and work with [[quantum image]]s.<ref name="Venegas-Andraca2005">{{cite thesis |last= Venegas-Andraca |first= Salvador E.|date= 2005 |title= Discrete Quantum Walks and Quantum Image Processing|type= DPhil thesis|publisher= The University of Oxford|url= https://ora.ox.ac.uk/objects/uuid:2baab08b-ee68-4ce5-8e68-8201f086a1ba}}</ref><ref name="Iliyasu Towards 2013">{{cite journal |title=Towards realising secure and efficient image and video processing applications on quantum computers |journal=Entropy |volume=15 |issue=8 |pages=2874–2974 |year=2013 |last1=Iliyasu |first1=A.M.|bibcode=2013Entrp..15.2874I |doi=10.3390/e15082874 |doi-access=free }}</ref> Due to some of the astounding properties inherent to quantum computation, notably [[Quantum entanglement|entanglement]] and [[Parallel computing|parallelism]], it is anticipated that QIP technologies will offer capabilities and performances unrivaled by their traditional equivalents, in terms of computing speed, security, and minimum storage requirements.<ref name="Iliyasu Towards 2013"/><ref name="Yan Quantum 2017">{{cite journal |title=Quantum image processing: A review of advances in its security technologies |journal=International Journal of Quantum Information |volume=15 |issue=3 |pages=1730001–44 |year=2017 |last1=Yan |first1=F.|last2=Iliyasu |first2=A.M.|last3=Le |first3=P.Q.|doi=10.1142/S0219749917300017 |bibcode=2017IJQI...1530001Y |doi-access=free }}</ref>