Content deleted Content added
m Open access bot: doi added to citation with #oabot. |
m Open access bot: doi added to citation with #oabot. |
||
Line 167:
[[Sparse coding]] may be a general strategy of neural systems to augment memory capacity. To adapt to their environments, animals must learn which stimuli are associated with rewards or punishments and distinguish these reinforced stimuli from similar but irrelevant ones. Such task requires implementing stimulus-specific [[associative memory (psychology)|associative memories]] in which only a few neurons out of a [[Neural ensemble|population]] respond to any given stimulus and each neuron responds to only a few stimuli out of all possible stimuli.
Theoretical work on SDM by Kanerva has suggested that sparse coding increases the capacity of associative memory by reducing overlap between representations. Experimentally, sparse representations of sensory information have been observed in many systems, including vision,<ref>{{cite journal | last1 = Vinje | first1 = WE | last2 = Gallant | first2 = JL | year = 2000 | title = Sparse coding and decorrelation in primary visual cortex during natural vision | url = https://pdfs.semanticscholar.org/3efc/4ac8f70edde57661b908105f4fd21a43fbab.pdf | archive-url = https://web.archive.org/web/20170911115737/https://pdfs.semanticscholar.org/3efc/4ac8f70edde57661b908105f4fd21a43fbab.pdf | url-status = dead | archive-date = 2017-09-11 | journal = Science | volume = 287 | issue = 5456| pages = 1273–1276 | pmid = 10678835 | doi = 10.1126/science.287.5456.1273 | citeseerx = 10.1.1.456.2467 | bibcode = 2000Sci...287.1273V | s2cid = 13307465 }}</ref> audition,<ref>{{cite journal | last1 = Hromádka | first1 = T | last2 = Deweese | first2 = MR | last3 = Zador | first3 = AM | year = 2008 | title = Sparse representation of sounds in the unanesthetized auditory cortex | journal = PLOS Biol | volume = 6 | issue = 1| page = e16 | pmid = 18232737 | doi=10.1371/journal.pbio.0060016 | pmc=2214813}}</ref> touch,<ref>{{cite journal | last1 = Crochet | first1 = S | last2 = Poulet | first2 = JFA | last3 = Kremer | first3 = Y | last4 = Petersen | first4 = CCH | year = 2011 | title = Synaptic mechanisms underlying sparse coding of active touch | journal = Neuron | volume = 69 | issue = 6| pages = 1160–1175 | pmid = 21435560 | doi=10.1016/j.neuron.2011.02.022| s2cid = 18528092 | doi-access = free }}</ref> and olfaction.<ref>{{cite journal | last1 = Ito | first1 = I | last2 = Ong | first2 = RCY | last3 = Raman | first3 = B | last4 = Stopfer | first4 = M | year = 2008 | title = Sparse odor representation and olfactory learning | journal = Nat Neurosci | volume = 11 | issue = 10| pages = 1177–1184 | pmid = 18794840 | pmc=3124899 | doi=10.1038/nn.2192}}</ref> However, despite the accumulating evidence for widespread sparse coding and theoretical arguments for its importance, a demonstration that sparse coding improves the stimulus-specificity of associative memory has been lacking until recently.
Some progress has been made in 2014 by [[Gero Miesenböck]]'s lab at the [[University of Oxford]] analyzing [[Drosophila]] [[Olfactory system]].<ref>A sparse memory is a precise memory. Oxford Science blog. 28 Feb 2014. http://www.ox.ac.uk/news/science-blog/sparse-memory-precise-memory</ref>
|