Content deleted Content added
m convert special characters (via WP:JWB) |
m Open access bot: doi added to citation with #oabot. |
||
Line 36:
== Multidimensional complex wavelet transform==
Similar to the 1-D complex wavelet transform,<ref name=kingsbury>{{cite journal|last1=Kingsbury|first1=Nick|title=Complex Wavelets for Shift Invariant Analysis and Filtering of Signals|journal= Applied and Computational Harmonic Analysis|date=2001|volume=10|issue=3|pages=234–253|doi=10.1006/acha.2000.0343|url=http://www.idealibrary.com|doi-access=free}}</ref> tensor products of complex wavelets are considered to produce complex wavelets for multidimensional signal analysis. With further analysis it is seen that these complex wavelets are oriented.<ref name=IEEEmag>{{cite journal|last1=Selesnick|first1=Ivan|last2=Baraniuk|first2=Richard|last3=Kingsbury|first3=Nick|title=The Dual-Tree Complex Wavelet Transform|journal=IEEE Signal Processing Magazine|volume=22|issue=6|date=2005|pages=123–151|doi=10.1109/MSP.2005.1550194|bibcode=2005ISPM...22..123S|hdl=1911/20355|hdl-access=free}}</ref> This sort of orientation helps to resolve the directional ambiguity of the signal.
===Implementation of multidimensional (M-D) dual tree CWT ===
|