Content deleted Content added
→Temperature dependence of the electron work function: Proper citation style : First Author et al. Tags: review edit Mobile edit Mobile web edit |
Tags: Mobile edit Mobile web edit |
||
Line 13:
In practice, one directly controls {{math|''E''<sub>F</sub>}} by the voltage applied to the material through electrodes, and the work function is generally a fixed characteristic of the surface material. Consequently, this means that when a voltage is applied to a material, the electrostatic potential {{math|''ϕ''}} produced in the vacuum will be somewhat lower than the applied voltage, the difference depending on the work function of the material surface. Rearranging the above equation, one has
:<math>\phi = V - \frac{W}{e}</math>
where {{math|''V'' {{=}} −''E''<sub>F</sub>/''e''}} is the voltage of the material (as measured by a [[voltmeter]], through an attached electrode), relative to an [[electrical ground]] that is defined as having zero Fermi level. The fact that {{math|''ϕ''}} depends on the material surface means that the space between two dissimilar conductors will have a built-in [[electric field]], when those conductors are in total equilibrium with each other (electrically shorted to each other, and with equal temperatures).
== Applications ==
|