Content deleted Content added
m Open access bot: arxiv added to citation with #oabot. |
m v2.04b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation) |
||
Line 1:
{{Merge from|Draft:Graph neural network|discuss=Talk:Graph neural network#Proposed merge of Draft:Graph neural network into Graph neural network|date=July 2021}}
A '''graph neural network (GNN)''' is a class of [[Neural network|neural networks]] for processing data represented by [[Graph (abstract data type)|graph data structures]].<ref>{{Cite journal|last=Scarselli|first=Franco|last2=Gori|first2=Marco|last3=Tsoi|first3=Ah Chung|last4=Hagenbuchner|first4=Markus|last5=Monfardini|first5=Gabriele|date=2009|title=The Graph Neural Network Model|url=https://ieeexplore.ieee.org/abstract/document/4700287|journal=IEEE Transactions on Neural Networks|volume=20|issue=1|pages=61–80|doi=10.1109/TNN.2008.2005605|issn=1941-0093}}</ref>
Since their inception, several variants of the simple message passing neural network (MPNN) framework have been proposed.<ref>{{Cite journal|last=Kipf|first=Thomas N|last2=Welling|first2=Max|date=2016|title=Semi-supervised classification with graph convolutional networks|url=https://ieeexplore.ieee.org/abstract/document/4700287|journal=International Conference on Learning Representations|volume=5|via=arXiv}}</ref><ref>{{Cite journal|last=Defferrard|first=Michaël|last2=Bresson|first2=Xavier|last3=Vandergheynst|first3=Pierre|date=2017-02-05|title=Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering|url=http://arxiv.org/abs/1606.09375|journal=Neural Information Processing Systems|volume=30}}</ref><ref>{{Cite journal|last=Hamilton|first=William|last2=Ying|first2=Rex|last3=Leskovec|first3=Jure|date=2017|title=Inductive Representation Learning on Large Graphs|url=https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf|journal=Neural Information Processing Systems|volume=31|via=Stanford}}</ref><ref>{{Cite journal|last=Veličković|first=Petar|last2=Cucurull|first2=Guillem|last3=Casanova|first3=Arantxa|last4=Romero|first4=Adriana|last5=Liò|first5=Pietro|last6=Bengio|first6=Yoshua|date=2018-02-04|title=Graph Attention Networks|url=http://arxiv.org/abs/1710.10903|journal=International Conference on Learning Representations|volume=6}}</ref>
It has been mathematically proven that GNNs are a weak form of the Weisfeiler–Lehman graph isomorphism test,<ref>{{Cite journal|last=Douglas|first=B. L.|date=2011-01-27|title=The Weisfeiler–Lehman Method and Graph Isomorphism Testing|url=http://arxiv.org/abs/1101.5211|journal=arXiv:1101.5211 [math]}}</ref>
==References==
|