Content deleted Content added
Jtuckerfoltz (talk | contribs) |
|||
Line 80:
In 1990, Impagliazzo and Levin showed that if there is an efficient average-case algorithm for a distNP-complete problem under the uniform distribution, then there is an average-case algorithm for every problem in NP under any polynomial-time samplable distribution.<ref name="imp90">R. Impagliazzo and L. Levin, "No Better Ways to Generate Hard NP Instances than Picking Uniformly at Random," in Proceedings of the 31st IEEE Sympo- sium on Foundations of Computer Science, pp. 812–821, 1990.</ref> Applying this theory to natural distributional problems remains an outstanding open question.<ref name="bog06"/>
In 1992, Ben-David et al.
In 1993, Feigenbaum and Fortnow showed that it is not possible to prove, under non-adaptive random reductions, that the existence of a good-on-average algorithm for a distNP-complete problem under the uniform distribution implies the existence of worst-case efficient algorithms for all problems in NP.<ref name="ff93">J. Feigenbaum and L. Fortnow, "Random-self-reducibility of complete sets," SIAM Journal on Computing, vol. 22, pp. 994–1005, 1993.</ref> In 2003, Bogdanov and Trevisan generalized this result to arbitrary non-adaptive reductions.<ref name="bog03">A. Bogdanov and L. Trevisan, "On worst-case to average-case reductions for NP problems," in Proceedings of the 44th IEEE Symposium on Foundations of Computer Science, pp. 308–317, 2003.</ref> These results show that it is unlikely that any association can be made between average-case complexity and worst-case complexity via reductions.<ref name="bog06"/>
|