Content deleted Content added
→Definitions: reorganize a footnote |
→Notes: Make proof more understandable Tags: Reverted Visual edit |
||
Line 18:
\int_{-\infty}^\infty h(\tau)\cdot x_{_T}(t - \tau)\,d\tau
&=\sum_{k=-\infty}^\infty \left[\int_{t_o+kT}^{t_o+(k+1)T} h(\tau)\cdot x_{_T}(t - \tau)\ d\tau\right] \quad t_0 \text{ is an arbitrary parameter}\\
&= \sum_{k=-\infty}^\infty \left[\int_{t_o}^{t_o+T} h(\tau
&=\sum_{k=-\infty}^\infty \left[\int_{t_o}^{t_o+T} h(\tau + kT)\cdot \underbrace{x_{_T}(t - \tau-kT)}_{x_{_T}(t - \tau), \text{ by periodicity}}\ d\tau\right]\\
&=\int_{t_o}^{t_o+T} \left[\sum_{k=-\infty}^\infty h(\tau + kT)\cdot x_{_T}(t - \tau)\right]\ d\tau\\
&=\int_{t_o}^{t_o+T} \underbrace{\left[\sum_{k=-\infty}^\infty h(\tau + kT)\right]}_{\triangleq \ h_{_T}(\tau)}\cdot x_{_T}(t - \tau)\ d\tau
|