Content deleted Content added
→Notes: Make proof more understandable Tags: Reverted Visual edit |
Undid revision 1038944522 by 2A00:1398:300:302:0:0:0:109C (talk) the 2nd step is incorrect |
||
Line 18:
\int_{-\infty}^\infty h(\tau)\cdot x_{_T}(t - \tau)\,d\tau
&=\sum_{k=-\infty}^\infty \left[\int_{t_o+kT}^{t_o+(k+1)T} h(\tau)\cdot x_{_T}(t - \tau)\ d\tau\right] \quad t_0 \text{ is an arbitrary parameter}\\
&=
&=\int_{t_o}^{t_o+T} \left[\sum_{k=-\infty}^\infty h(\tau + kT)\cdot x_{_T}(t - \tau)\right]\ d\tau\\
&=\int_{t_o}^{t_o+T} \underbrace{\left[\sum_{k=-\infty}^\infty h(\tau + kT)\right]}_{\triangleq \ h_{_T}(\tau)}\cdot x_{_T}(t - \tau)\ d\tau
|