Content deleted Content added
Undid revision 1038944522 by 2A00:1398:300:302:0:0:0:109C (talk) the 2nd step is incorrect |
change footnote to inline derivation |
||
Line 13:
Then''':'''
{{NumBlk||<math>
:<math>\begin{align}▼
{{Collapse top|title=Derivation of Eq.1}}
\int_{-\infty}^\infty h(\tau)\cdot x_{_T}(t - \tau)\,d\tau
&=\sum_{k=-\infty}^\infty \left[\int_{t_o+kT}^{t_o+(k+1)T} h(\tau)\cdot x_{_T}(t - \tau)\ d\tau\right] \quad t_0 \text{ is an arbitrary parameter}\\
&=\sum_{k=-\infty}^\infty \left[\int_{t_o}^{t_o+T} h(
&=\int_{t_o}^{t_o+T} \left[\sum_{k=-\infty}^\infty h(
&=\int_{t_o}^{t_o+T} \underbrace{\left[\sum_{k=-\infty}^\infty h(
&=\int_{t_o}^{t_o+T} h_{_T}(\tau)\cdot x_{_T}(t - \tau)\ d\tau \quad \text{substituting } \tau \triangleq u
\end{align}</math>
{{Collapse bottom}}
Both forms can be called ''periodic convolution''.{{efn-la
Line 71 ⟶ 74:
*[[Circulant matrix]]
*[[Hilbert transform#Discrete Hilbert transform|Discrete Hilbert transform]]
== Page citations ==
|