Circular convolution: Difference between revisions

Content deleted Content added
Undid revision 1038944522 by 2A00:1398:300:302:0:0:0:109C (talk) the 2nd step is incorrect
change footnote to inline derivation
Line 13:
Then''':'''
 
{{NumBlk||<math>
:<math>\int_{t_o}^{t_o+T} h_{_T}(\tau)\cdot x_{_T}(t - \tau)\,d\tau = \int_{-\infty}^\infty h(\tau)\cdot x_{_T}(t - \tau)\,d\tau\ \triangleq\ (h *x_{_T})(t) = (x * h_{_T})(t).</math>|{{efn-uaEquationRef|Eq.1}}}}
|Proof:
 
:<math>\begin{align}
{{Collapse top|title=Derivation of Eq.1}}
:<math>\begin{align}
\int_{-\infty}^\infty h(\tau)\cdot x_{_T}(t - \tau)\,d\tau
&=\sum_{k=-\infty}^\infty \left[\int_{t_o+kT}^{t_o+(k+1)T} h(\tau)\cdot x_{_T}(t - \tau)\ d\tau\right] \quad t_0 \text{ is an arbitrary parameter}\\
&=\sum_{k=-\infty}^\infty \left[\int_{t_o}^{t_o+T} h(\tauu + kT)\cdot \underbrace{x_{_T}(t - \tauu-kT)}_{x_{_T}(t - \tauu), \text{ by periodicity}}\ d\taudu\right] \quad \text{substituting } u\tau \rightarrowtriangleq \tau+-kT\\
&=\int_{t_o}^{t_o+T} \left[\sum_{k=-\infty}^\infty h(\tauu + kT)\cdot x_{_T}(t - \tauu)\right]\ d\tau\\
&=\int_{t_o}^{t_o+T} \underbrace{\left[\sum_{k=-\infty}^\infty h(\tauu + kT)\right]}_{\triangleq \ h_{_T}(\tauu)}\cdot x_{_T}(t - \tauu)\ ddu\\tau
&=\int_{t_o}^{t_o+T} h_{_T}(\tau)\cdot x_{_T}(t - \tau)\ d\tau \quad \text{substituting } \tau \triangleq u
\end{align}</math>
{{Collapse bottom}}
}}
 
Both forms can be called ''periodic convolution''.{{efn-la
Line 71 ⟶ 74:
*[[Circulant matrix]]
*[[Hilbert transform#Discrete Hilbert transform|Discrete Hilbert transform]]
 
== Notes ==
{{notelist-ua}}
 
== Page citations ==