Modello probit: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Botcrux (discussione | contributi)
Folto82 (discussione | contributi)
mNessun oggetto della modifica
Riga 1:
[[File:Logistic-sigmoid-vs-scaled-probit.svg|thumb|In rosso tratteggiato è rappresentato il modello probit.]]
In [[statistica]] e in [[econometria]], il '''modello probit''' è un modello di [[regressione nonlineare]] utilizzato quando la [[variabile dipendente]] è di tipo [[Variabile dicotomica|dicotomico]]. L'obbiettivoobiettivo del modello è di stabilire la probabilità con cui un'osservazione può generare uno o l'altro valore della variabile dipendente; può inoltre essere utilizzato per classificare le osservazioni, in base alla caratteristiche di queste, in due categorie.<ref name="Definizione">{{Cita libro|titolo=Introduction to Econometrics|autore1=James H. Stock|autore2=Mark W. Watson|editore=Pearson|anno=2015|edizione=3|lingua=inglese|ISBN=978-1-292-07131-2|capitolo=Regression with a Binary Dependent Variable|pp=437-439}}</ref><br>
Il modello è stato proposto per la prima volta da [[Chester Ittner Bliss]] nel [[1934]],<ref>{{Cita pubblicazione|titolo=THE METHOD OF PROBITS|autore=Chester I. Bliss|wkautore=Chester Ittner Bliss|rivista=Science|data=12 gennaio 1934|volume=79|pp=38-39|doi=10.1126/science.79.2037.38|PMID=17813446|accesso=20 novembre 2018}}</ref> ampliato l'anno successivo da [[Ronald Fisher]] che introdusse un metodo iterativo per la stima dei parametri tramite il [[metodo della massima verosimiglianza]].