Content deleted Content added
Citation bot (talk | contribs) Add: pmid, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by RoanokeVirginia | Category:CS1 errors: unsupported parameter | #UCB_Category 717/947 |
|||
Line 5:
J. Bigun and G. Granlund (1986), ''Optimal Orientation Detection of Linear Symmetry''. Tech. Report LiTH-ISY-I-0828, Computer Vision Laboratory, Linkoping University, Sweden 1986; Thesis Report, Linkoping studies in science and technology No. 85, 1986.
</ref><ref name=bigun87>
{{cite conference|author1=J. Bigun |author2=G. Granlund |name-list-style=amp |
</ref><ref name=knutsson89>
{{cite conference|author=H. Knutsson|
</ref>
Line 79:
Note that the average of the gradient <math>\nabla I</math> inside the window is '''not''' a good indicator of anisotropy. Aligned but oppositely oriented gradient vectors would cancel out in this average, whereas in the structure tensor they are properly added together.<ref>
{{cite journal|author=T. Brox, J. Weickert, B. Burgeth and P. Mrazek|
</ref> This is a reason for why <math>(\nabla I)(\nabla I)^\text{T}</math> is used in the averaging of the structure tensor to optimize the direction instead of <math>\nabla I</math>.
Line 243:
==Applications==
The eigenvalues of the structure tensor play a significant role in many image processing algorithms, for problems like [[corner detection]], [[interest point detection]], and [[feature tracking]].<ref name="Medioni">
{{cite conference|author1=M. Nicolescu |author2=G. Medioni |name-list-style=amp |
</ref><ref>
{{cite journal
|author=W. Förstner|
|
</ref><ref>
{{cite conference|author1=C. Harris |author2=M. Stephens |name-list-style=amp |
|
</ref><ref>
{{cite journal|author=K. Rohr|
|
</ref><ref>
{{cite conference|author1=I. Laptev |author2=T. Lindeberg |name-list-style=amp |
|
</ref><ref>
{{cite conference|author=B. Triggs|
|
</ref><ref>
{{cite conference|author1=C. Kenney, M. Zuliani |author2=B. Manjunath |name-list-style=amp |
</ref> The structure tensor also plays a central role in the [[Lucas–Kanade Optical Flow Method|Lucas-Kanade optical flow algorithm]], and in its extensions to estimate [[affine shape adaptation]];<ref name=lingar97/> where the magnitude of <math>\lambda_2</math> is an indicator of the reliability of the computed result. The tensor has been used for [[scale space]] analysis,<ref name=lin94book/> estimation of local surface orientation from monocular or binocular cues,<ref name=garlin96/> non-linear [[fingerprint enhancement]],<ref>
A. Almansa and T. Lindeberg (2000), ''[http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A338874&dswid=-9161 Enhancement of fingerprint images using shape-adaptated scale-space operators]''. IEEE Transactions on Image Processing, volume 9, number 12, pages 2027–2042.
</ref> [[diffusion-based image processing]],<ref>[http://www.mia.uni-saarland.de/weickert/book.html J. Weickert (1998), Anisotropic diffusion in image processing, Teuber Verlag, Stuttgart.]</ref><ref>
{{cite journal|author=D. Tschumperle and Deriche|
</ref><ref>
{{cite conference|author1=S. Arseneau |author2=J. Cooperstock |name-list-style=amp |
</ref><ref>
{{cite conference|author1=S. Arseneau |author2=J. Cooperstock |name-list-style=amp |
</ref> and several other image processing problems. The structure tensor can be also applied in [[geology]] to filter [[Seismology|seismic]] data.<ref>{{Cite journal|last1=Yang|first1=Shuai|last2=Chen|first2=Anqing|last3=Chen|first3=Hongde|date=2017-05-25|title=Seismic data filtering using non-local means algorithm based on structure tensor|journal=Open Geosciences|volume=9|issue=1|pages=151–160|doi=10.1515/geo-2017-0013|issn=2391-5447|bibcode=2017OGeo....9...13Y|s2cid=134392619|doi-access=free}}</ref>
Line 278:
:<math> \begin{bmatrix} x' \\ y' \\ t' \end{bmatrix} = G \begin{bmatrix} x \\ y \\ t \end{bmatrix} = \begin{bmatrix} x - v_x \, t \\ y - v_y \, t \\ t \end{bmatrix} </math>,
it is, however, from a computational viewpoint preferable to parameterize the components in the structure tensor/second-moment matrix <math>S</math> using the notion of ''Galilean diagonalization''<ref name=lin04icpr>
{{cite conference|author1=T. Lindeberg |author2=A. Akbarzadeh |author3=I. Laptev |name-list-style=amp |
</ref>
:<math> S' = R_\text{space}^{-\text{T}} \, G^{-\text{T}} \, S \, G^{-1} \, R_\text{space}^{-1} = \begin{bmatrix} \nu_1 & \, & \, \\ \, & \nu_2 & \, \\ \, & \, & \nu_3 \end{bmatrix} </math>
Line 285:
:<math> S'' = R_\text{spacetime}^{-\text{T}} \, S \, R_\text{spacetime}^{-1} = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{bmatrix} </math>.
To obtain true Galilean invariance, however, also the shape of the spatio-temporal window function needs to be adapted,<ref name=lin04icpr/><ref>
{{cite conference|author1=I. Laptev |author2=T. Lindeberg |name-list-style=amp |title=Velocity adaptation of space–time interest points |
</ref> corresponding to the transfer of [[affine shape adaptation]]<ref name=lingar97/> from spatial to spatio-temporal image data.
In combination with local spatio-temporal histogram descriptors,<ref>
{{cite conference|author1=I. Laptev |author2=T. Lindeberg |name-list-style=amp |title=Local descriptors for spatio-temporal recognition|
</ref>
these concepts together allow for Galilean invariant recognition of spatio-temporal events.<ref>
{{cite conference|author1=I. Laptev |author2=B. Caputo |author3=C. Schuldt |author4=T. Lindeberg |name-list-style=amp |
==See also==
|