Content deleted Content added
Tom.Reding (talk | contribs) m +{{Authority control}} (1 ID from Wikidata), WP:GenFixes on |
Joel Brennan (talk | contribs) m added wikilinks |
||
Line 3:
{{more footnotes|date=February 2013}}
In [[number theory]], an '''{{anchor|definition-additive_function-number_theory}}additive function''' is an [[arithmetic function]] ''f''(''n'') of the positive [[integer]] variable ''n'' such that whenever ''a'' and ''b'' are [[coprime]], the function
:''f''(''ab'') = ''f''(''a'') + ''f''(''b'').
Line 13:
== Examples ==
* The restriction of the [[logarithm|logarithmic function]] to '''N'''.
* The '''multiplicity''' of a [[prime number|prime]] factor ''p'' in ''n'', that is the largest exponent ''m'' for which ''p<sup>m</sup>'' [[divisor|divides]] ''n''.
* ''a''<sub>0</sub>(''n'')
::''a''<sub>0</sub>(4) = 2 + 2 = 4
::''a''<sub>0</sub>(20) = ''a''<sub>0</sub>(2<sup>2</sup> · 5) = 2 + 2 + 5 = 9
::''a''<sub>0</sub>(27) = 3 + 3 + 3 = 9
::''a''<sub>0</sub>(144) = ''a''<sub>0</sub>(2<sup>4</sup> · 3<sup>2</sup>) = ''a''<sub>0</sub>(2<sup>4</sup>) + ''a''<sub>0</sub>(3<sup>2</sup>) = 8 + 6 = 14
::''a''<sub>0</sub>(
::''a''<sub>0</sub>(
::''a''<sub>0</sub>(54,032,858,972,279) = 1240658
::''a''<sub>0</sub>(54,032,858,972,302) = 1780417
Line 37:
::Ω(27) = Ω(3·3·3) = 3
::Ω(144) = Ω(2<sup>4</sup> · 3<sup>2</sup>) = Ω(2<sup>4</sup>) + Ω(3<sup>2</sup>) = 4 + 2 = 6
::Ω(
::Ω(
::Ω(
::Ω(
::Ω(54,032,858,972,279) = 3
::Ω(54,032,858,972,302) = 6
::Ω(20,802,650,704,327,415) = 7
* ω(''n''), defined as the total number of
::ω(4) = 1
Line 54:
::ω(27) = ω(3<sup>3</sup>) = 1
::ω(144) = ω(2<sup>4</sup> · 3<sup>2</sup>) = ω(2<sup>4</sup>) + ω(3<sup>2</sup>) = 1 + 1 = 2
::ω(
::ω(
::ω(
::ω(
::ω(54,032,858,972,279) = 3
::ω(54,032,858,972,302) = 5
::ω(20,802,650,704,327,415) = 5
* ''a''<sub>1</sub>(''n'')
::''a''<sub>1</sub>(1) = 0
Line 69:
::''a''<sub>1</sub>(27) = 3
::''a''<sub>1</sub>(144) = ''a''<sub>1</sub>(2<sup>4</sup> · 3<sup>2</sup>) = ''a''<sub>1</sub>(2<sup>4</sup>) + ''a''<sub>1</sub>(3<sup>2</sup>) = 2 + 3 = 5
::''a''<sub>1</sub>(
::''a''<sub>1</sub>(
::''a''<sub>1</sub>(
::''a''<sub>1</sub>(
::''a''<sub>1</sub>(54,032,858,972,279) = 1238665
::''a''<sub>1</sub>(54,032,858,972,302) = 1780410
Line 101:
:<math>\mathcal{M}_{f^2}(x) = x E^2(x) + O(x D^2(x)).</math>
There is always an absolute constant <math>C_f > 0</math> such that for all [[natural
:<math>\sum_{n \leq x} |f(n) - E(x)|^2 \leq C_f \cdot x D^2(x).</math>
Line 107:
Let
:<math>
Suppose that <math>f</math> is an additive function with <math>-1 \leq f(p^{\alpha}) = f(p) \leq 1</math>
|