Inverse demand function: Difference between revisions

Content deleted Content added
m Applications: added missing hyphen
The Application section was almost all about marginal revenue, so I deleted it as a section and moved its content to the marginal revenue section.
Line 4:
 
:<math>P = f^{-1}(Q).</math>
 
The inverse demand function is the form of the demand function that appears in the famous [[Marshallian Scissors]] diagram. The function appears in this form because economists place the independent variable on the y-axis and the dependent variable on the x-axis. The slope of the inverse function is ∆P/∆Q. This fact should be kept in mind when calculating elasticity. The formula for elasticity is (∆Q/∆P) × (P/Q).
 
==Definition==
Line 12 ⟶ 14:
 
To compute the inverse demand function, simply solve for P from the demand function. For example, if the demand function has the form <math>Q = 240 - 2P</math> then the inverse demand function would be <math>P = 120 - .5Q</math>.<ref>Samuelson & Marks, Managerial Economics 4th ed. (Wiley 2003)</ref> Note that although price is the dependent variable in the inverse demand function, it is still the case that the equation represents how the price determines the quantity demanded, not the reverse.
 
==Applications==
The inverse demand function can be used to derive the total and marginal revenue functions. Total revenue equals price, P, times quantity, Q, or TR = P×Q. Multiply the inverse demand function by Q to derive the total revenue function: TR = (120 - .5Q) × Q = 120Q - 0.5Q². The marginal revenue function is the first derivative of the total revenue function or MR = 120 - Q. Note that in this linear example the MR function has the same y-intercept as the inverse demand function, the x-intercept of the MR function is one-half the value of the demand function, and the slope of the MR function is twice that of the inverse demand function. This relationship holds true for all linear demand equations. The importance of being able to quickly calculate MR is that the profit-maximizing condition for firms regardless of market structure is to produce where marginal revenue equals marginal cost (MC). To derive MC the first derivative of the total cost function is taken.
 
For example, assume cost, C, equals 420 + 60Q + Q<sup>2</sup>. then MC = 60 + 2Q.<ref>Perloff, Microeconomics, Theory & Applications with Calculus (Pearson 2008) 240.{{ISBN|0-321-27794-5}}</ref> Equating MR to MC and solving for Q gives Q = 20. So 20 is the profit-maximizing quantity: to find the profit-maximizing price simply plug the value of Q into the inverse demand equation and solve for P.
 
The inverse demand function is the form of the demand function that appears in the famous [[Marshallian Scissors]] diagram. The function appears in this form because economists place the independent variable on the y-axis and the dependent variable on the x-axis. The slope of the inverse function is ∆P/∆Q. This fact should be kept in mind when calculating elasticity. The formula for elasticity is (∆Q/∆P) × (P/Q).
 
==Relation to marginal revenue==
There is a close relationship between any inverse demand function for a linear demand equation and the marginal revenue function. For any linear demand function with an inverse demand equation of the form P = a - bQ, the marginal revenue function has the form MR = a - 2bQ.<ref>Samuelson, W & Marks, S Managerial Economics 4th ed. Page 47. Wiley 2003.</ref> The marginalinverse revenuelinear demand function and inversethe linearmarginal demandrevenue function derived from it have the following characteristics:
*Both functions are linear.<ref>Perloff, J: Microeconomics Theory & Applications with Calculus page 363. Pearson 2008.</ref>
*The marginal revenue function and inverse demand function have the same y intercept.<ref>Samuelson, W & Marks, S Managerial Economics 4th ed. Page 47. Wiley 2003.</ref>
Line 27 ⟶ 22:
* The marginal revenue function has twice the slope of the inverse demand function.<ref>Samuelson, W & Marks, S Managerial Economics 4th ed. Page 47. Wiley 2003.</ref>
* The marginal revenue function is below the inverse demand function at every positive quantity.<ref>Perloff, J: Microeconomics Theory & Applications with Calculus page 362. Pearson 2008.</ref>
 
The inverse demand function can be used to derive the total and marginal revenue functions. Total revenue equals price, P, times quantity, Q, or TR = P×Q. Multiply the inverse demand function by Q to derive the total revenue function: TR = (120 - .5Q) × Q = 120Q - 0.5Q². The marginal revenue function is the first derivative of the total revenue function or MR = 120 - Q. Note that in this linear example the MR function has the same y-intercept as the inverse demand function, the x-intercept of the MR function is one-half the value of the demand function, and the slope of the MR function is twice that of the inverse demand function. This relationship holds true for all linear demand equations. The importance of being able to quickly calculate MR is that the profit-maximizing condition for firms regardless of market structure is to produce where marginal revenue equals marginal cost (MC). To derive MC the first derivative of the total cost function is taken.
 
For example, assume cost, C, equals 420 + 60Q + Q<sup>2</sup>. then MC = 60 + 2Q.<ref>Perloff, Microeconomics, Theory & Applications with Calculus (Pearson 2008) 240.{{ISBN|0-321-27794-5}}</ref> Equating MR to MC and solving for Q gives Q = 20. So 20 is the profit-maximizing quantity: to find the profit-maximizing price simply plug the value of Q into the inverse demand equation and solve for P.
 
==See also==