Content deleted Content added
TobiasDiez (talk | contribs) Remove duplication in last two section about the general measure-theoretic formulation, and normalize notation. |
TobiasDiez (talk | contribs) Clarify the definition of a regular conditional distribution in the general case. |
||
Line 72:
==Measure-theoretic formulation==
Let <math>(\Omega, \mathcal{F}, P)</math> be a probability space, <math>\mathcal{G} \subseteq \mathcal{F}</math> a <math>\sigma</math>-field in <math>\mathcal{F}</math>. Given <math>A\in \mathcal{F}</math>, the [[Radon-Nikodym theorem]] implies that there is<ref>[[#billingsley95|Billingsley (1995)]], p. 430</ref> a <math>\mathcal{G}</math>-measurable random variable <math>P(A\mid\mathcal{G}):\Omega\to \mathbb{R}</math>, called the '''conditional probability''', such that
Special cases:
Line 78:
* For the trivial sigma algebra <math>\mathcal G= \{\emptyset,\Omega\}</math>, the conditional probability is the constant function <math>\operatorname{P}\!\left( A\mid \{\emptyset,\Omega\} \right) = \operatorname{P}(A).</math>
* If <math>A\in \mathcal{G}</math>, then <math>\operatorname{P}(A\mid\mathcal{G})=1_A</math>, the indicator function (defined below).
Let <math>X : \Omega \to
For a real-valued random variable (with respect to the Borel <math>\sigma</math>-field <math>\mathcal{R}^1</math> on <math>\mathbb{R}</math>), every conditional probability distribution is regular<ref>[[#billingsley95|Billingsley (1995)]], p. 439</ref>. In this case,<math>E[X \mid \mathcal{G}] = \int_{-\infty}^\infty x \, \mu(d x, \cdot)</math> almost surely.
=== Relation to conditional expectation ===
Line 89 ⟶ 91:
:<math>\operatorname{E}(\mathbf{1}_A) = \operatorname{P}(A). \; </math>
Given a <math>\sigma</math>-field <math>\mathcal{G} \subseteq \mathcal{F}</math>, the conditional probability <math> \operatorname{P}(A\mid\mathcal{G})</math> is a version of the [[conditional expectation]] of the indicator function for <math>A</math>:
:<math>\operatorname{P}(A\mid\mathcal{B}) = \operatorname{E}(\mathbf{1}_A\mid\mathcal{B}) \; </math>
|