Content deleted Content added
removed named ref entry already present above {{reflist}} - Fixed broken reference name – You can help! Category:Pages with broken reference names |
Citation bot (talk | contribs) Add: doi-access, pmid. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 935/958 |
||
Line 46:
* Physiological models:
** Convolution models:
*** DCM for evoked responses (DCM for ERP).<ref>{{Cite journal|last1=David|first1=Olivier|last2=Friston|first2=Karl J.|date=November 2003|title=A neural mass model for MEG/EEG|journal=NeuroImage|volume=20|issue=3|pages=1743–1755|doi=10.1016/j.neuroimage.2003.07.015|pmid=14642484|s2cid=1197179|issn=1053-8119}}</ref><ref>{{Citation|last1=Kiebel|first1=Stefan J.|date=2009-07-31|pages=141–170|publisher=The MIT Press|isbn=9780262013086|last2=Garrido|first2=Marta I.|last3=Friston|first3=Karl J.|doi=10.7551/mitpress/9780262013086.003.0006|chapter=Dynamic Causal Modeling for Evoked Responses|title=Brain Signal Analysis}}</ref> This is a biologically plausible neural mass model, extending earlier work by Jansen and Rit.<ref>{{Cite journal|last1=Jansen|first1=Ben H.|last2=Rit|first2=Vincent G.|date=1995-09-01|title=Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns|journal=Biological Cybernetics|volume=73|issue=4|pages=357–366|doi=10.1007/s004220050191|pmid=7578475|issn=0340-1200}}</ref> It emulates the activity of a cortical area using three neuronal sub-populations (see picture), each of which rests on two operators. The first operator transforms the pre-synaptic firing rate into a Post-Synaptic Potential (PSP), by [[Convolution|convolving]] pre-synaptic input with a synaptic response function (kernel). The second operator, a [[Sigmoid function|sigmoid]] function, transforms the membrane potential into a firing rate of action potentials.
*** DCM for LFP (Local Field Potentials).<ref>{{Cite journal|last1=Moran|first1=R.J.|last2=Kiebel|first2=S.J.|last3=Stephan|first3=K.E.|last4=Reilly|first4=R.B.|last5=Daunizeau|first5=J.|last6=Friston|first6=K.J.|date=September 2007|title=A neural mass model of spectral responses in electrophysiology|journal=NeuroImage|volume=37|issue=3|pages=706–720|doi=10.1016/j.neuroimage.2007.05.032|pmid=17632015|pmc=2644418|issn=1053-8119}}</ref> Extends DCM for ERP by adding the effects of specific ion channels on spike generation.
*** Canonical Microcircuit (CMC).<ref>{{Cite journal|last1=Bastos|first1=Andre M.|last2=Usrey|first2=W. Martin|last3=Adams|first3=Rick A.|last4=Mangun|first4=George R.|last5=Fries|first5=Pascal|last6=Friston|first6=Karl J.|date=November 2012|title=Canonical Microcircuits for Predictive Coding|journal=Neuron|volume=76|issue=4|pages=695–711|doi=10.1016/j.neuron.2012.10.038|pmid=23177956|pmc=3777738|issn=0896-6273}}</ref> Used to address hypotheses about laminar-specific ascending and descending connections in the brain, which underpin the [[predictive coding]] account of functional brain architectures. The single pyramidal cell population from DCM for ERP is split into deep and superficial populations (see picture). A version of the CMC has been applied to model multi-modal MEG and fMRI data.<ref>{{Cite journal|last1=Friston|first1=K.J.|last2=Preller|first2=Katrin H.|last3=Mathys|first3=Chris|last4=Cagnan|first4=Hayriye|last5=Heinzle|first5=Jakob|last6=Razi|first6=Adeel|last7=Zeidman|first7=Peter|date=February 2017|title=Dynamic causal modelling revisited|journal=NeuroImage|volume=199|pages=730–744|doi=10.1016/j.neuroimage.2017.02.045|pmid=28219774|pmc=6693530|issn=1053-8119}}</ref>
Line 79:
* Face validity establishes whether the parameters of a model can be recovered from simulated data. This is usually performed alongside the development of each new model (E.g.<ref name="Friston 2003" /><ref name="Stephan 2008" />).
* Construct validity assesses consistency with other analytical methods. For example, DCM has been compared with Structural Equation Modelling <ref>{{Cite journal|last1=Penny|first1=W.D.|last2=Stephan|first2=K.E.|last3=Mechelli|first3=A.|last4=Friston|first4=K.J.|date=January 2004|title=Modelling functional integration: a comparison of structural equation and dynamic causal models|journal=NeuroImage|volume=23|pages=S264–S274|doi=10.1016/j.neuroimage.2004.07.041|pmid=15501096|issn=1053-8119|citeseerx=10.1.1.160.3141|s2cid=8993497}}</ref> and other neurobiological computational models.<ref>{{Cite journal|last1=Lee|first1=Lucy|last2=Friston|first2=Karl|last3=Horwitz|first3=Barry|date=May 2006|title=Large-scale neural models and dynamic causal modelling|journal=NeuroImage|volume=30|issue=4|pages=1243–1254|doi=10.1016/j.neuroimage.2005.11.007|pmid=16387513|s2cid=19003382|issn=1053-8119}}</ref>
* Predictive validity assesses the ability to predict known or expected effects. This has included testing against iEEG / EEG / stimulation <ref>{{Cite journal|last1=David|first1=Olivier|last2=Guillemain|first2=Isabelle|last3=Saillet|first3=Sandrine|last4=Reyt|first4=Sebastien|last5=Deransart|first5=Colin|last6=Segebarth|first6=Christoph|last7=Depaulis|first7=Antoine|date=2008-12-23|title=Identifying Neural Drivers with Functional MRI: An Electrophysiological Validation|journal=PLOS Biology|volume=6|issue=12|pages=2683–97|doi=10.1371/journal.pbio.0060315|issn=1545-7885|pmc=2605917|pmid=19108604}}</ref><ref>{{Cite journal|last1=David|first1=Olivier|last2=Woźniak|first2=Agata|last3=Minotti|first3=Lorella|last4=Kahane|first4=Philippe|date=February 2008|title=Preictal short-term plasticity induced by intracerebral 1 Hz stimulation|journal=NeuroImage|volume=39|issue=4|pages=1633–1646|doi=10.1016/j.neuroimage.2007.11.005|pmid=18155929|s2cid=3415312|issn=1053-8119|url=https://www.hal.inserm.fr/inserm-00381199/file/David_Manuscript.pdf}}</ref><ref>{{Cite journal|last1=Reyt|first1=Sébastien|last2=Picq|first2=Chloé|last3=Sinniger|first3=Valérie|last4=Clarençon|first4=Didier|last5=Bonaz|first5=Bruno|last6=David|first6=Olivier|date=October 2010|title=Dynamic Causal Modelling and physiological confounds: A functional MRI study of vagus nerve stimulation|journal=NeuroImage|volume=52|issue=4|pages=1456–1464|doi=10.1016/j.neuroimage.2010.05.021|pmid=20472074|s2cid=1668349|issn=1053-8119|url=https://www.hal.inserm.fr/inserm-00498678/file/Manuscript_Author.pdf}}</ref><ref>{{Cite journal|last1=Daunizeau|first1=J.|last2=Lemieux|first2=L.|last3=Vaudano|first3=A. E.|last4=Friston|first4=K. J.|last5=Stephan|first5=K. E.|date=2013|title=An electrophysiological validation of stochastic DCM for fMRI|journal=Frontiers in Computational Neuroscience|volume=6|pages=103|doi=10.3389/fncom.2012.00103|pmid=23346055|pmc=3548242|issn=1662-5188|doi-access=free}}</ref> and against known pharmacological treatments.<ref>{{Cite journal|last1=Moran|first1=Rosalyn J.|last2=Symmonds|first2=Mkael|last3=Stephan|first3=Klaas E.|last4=Friston|first4=Karl J.|last5=Dolan|first5=Raymond J.|date=August 2011|title=An In Vivo Assay of Synaptic Function Mediating Human Cognition|journal=Current Biology|volume=21|issue=15|pages=1320–1325|doi=10.1016/j.cub.2011.06.053|pmid=21802302|pmc=3153654|issn=0960-9822}}</ref><ref>{{Cite journal|last1=Moran|first1=Rosalyn J.|last2=Jung|first2=Fabienne|last3=Kumagai|first3=Tetsuya|last4=Endepols|first4=Heike|last5=Graf|first5=Rudolf|last6=Dolan|first6=Raymond J.|last7=Friston|first7=Karl J.|last8=Stephan|first8=Klaas E.|last9=Tittgemeyer|first9=Marc|date=2011-08-02|title=Dynamic Causal Models and Physiological Inference: A Validation Study Using Isoflurane Anaesthesia in Rodents|journal=PLOS ONE|volume=6|issue=8|pages=e22790|doi=10.1371/journal.pone.0022790|pmid=21829652|pmc=3149050|bibcode=2011PLoSO...622790M|issn=1932-6203|doi-access=free}}</ref>
== Limitations / drawbacks ==
Line 95:
* [http://www.scholarpedia.org/article/Dynamic_causal_modeling Dynamic Causal Modelling on Scholarpedia]
* Understanding DCM: ten simple rules for the clinician<ref>{{Cite journal|last1=Kahan|first1=Joshua|last2=Foltynie|first2=Tom|date=December 2013|title=Understanding DCM: Ten simple rules for the clinician|journal=NeuroImage|volume=83|pages=542–549|doi=10.1016/j.neuroimage.2013.07.008|pmid=23850463|issn=1053-8119|doi-access=free}}</ref>
* Neural masses and fields in dynamic causal modeling<ref>{{Cite journal|last1=Moran|first1=Rosalyn|last2=Pinotsis|first2=Dimitris A.|last3=Friston|first3=Karl|date=2013|title=Neural masses and fields in dynamic causal modeling|journal=Frontiers in Computational Neuroscience|volume=7|pages=57|doi=10.3389/fncom.2013.00057|pmid=23755005|pmc=3664834|issn=1662-5188|doi-access=free}}</ref>
[[Category:Neuroimaging]]
|