Content deleted Content added
→Representations: MOS:WE, singular for the heading, overbolded |
m →Equivalent representations: link |
||
Line 128:
has determinant 1 and is an automorphism of ''f''. Acting on the representation <math>1 = f(x_1,y_1)</math> by this matrix yields the equivalent representation <math>1 = f(3x_1 + 4y_1, 2x_1 + 3 y_1)</math>. This is the recursion step in the process described above for generating infinitely many solutions to <math>1 = x^2 - 2y^2</math>. Iterating this matrix action, we find that the infinite set of representations of 1 by ''f'' that were determined above are all equivalent.
There are generally finitely many equivalence classes of representations of an integer ''n'' by forms of given nonzero discriminant <math>\Delta</math>. A complete set of
== Reduction and class numbers<!--'Class number (binary quadratic forms)' redirects here--> ==
|