Diagonal matrix: Difference between revisions

Content deleted Content added
more
m ce: non-zero → nonzero in two places.
Line 1:
{{Use American English|date = March 2019}}
{{Short description|Matrix whose only nonzero elements are on its main diagonal}}
In [[linear algebra]], a '''diagonal matrix''' is a [[matrix (mathematics)|matrix]] in which the entries outside the [[main diagonal]] are all zero; the term usually refers to [[square matrices]]. Elements of the main diagonal can either be zero or non-zerononzero. An example of a 2×2 diagonal matrix is <math>\left[\begin{smallmatrix}
3 & 0 \\
0 & 2 \end{smallmatrix}\right]</math>, while an example of a 3×3 diagonal matrix is<math>
Line 89:
:{{nowrap|diag(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>)}} {{nowrap|diag(''b''<sub>1</sub>, ..., ''b''<sub>''n''</sub>)}} = {{nowrap|diag(''a''<sub>1</sub>''b''<sub>1</sub>, ..., ''a''<sub>''n''</sub>''b''<sub>''n''</sub>)}}.
 
The diagonal matrix {{nowrap|diag(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>)}} is [[invertible matrix|invertible]] [[if and only if]] the entries ''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub> are all non-zerononzero. In this case, we have
 
:{{nowrap|diag(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>)<sup>−1</sup>}} = {{nowrap|diag(''a''<sub>1</sub><sup>−1</sup>, ..., ''a''<sub>''n''</sub><sup>−1</sup>)}}.