Content deleted Content added
m →External links: Task 24: removal of a template following a TFD |
Citation bot (talk | contribs) Add: doi-access. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 168/835 |
||
Line 15:
''Proceedings of the IEEE Symposium on Field-Programmable Custom Computing Machines''
(FCCM '97, April 16–18, 1997), pp. 24–33.
</ref> Elixent, NGEN,<ref>{{Cite journal|last1=McCaskill|first1=John S.|last2=Chorongiewski|first2=Harald|last3=Mekelburg|first3=Karsten|last4=Tangen|first4=Uwe|last5=Gemm|first5=Udo|date=1994-09-01|title=NGEN — Configurable computer hardware to simulate long-time self-organization of biopolymers|journal=Berichte der Bunsengesellschaft für Physikalische Chemie|language=en|volume=98|issue=9|pages=1114|doi=10.1002/bbpc.19940980906|issn=0005-9021}}</ref> Polyp,<ref>{{Cite book|title=Evolvable systems : from biology to hardware : second International Conference, ICES 98, Lausanne, Switzerland, September 23-25, 1998 : proceedings|date=1998|publisher=Springer|others=Sipper, Moshe., Mange, Daniel, 1940-, Pérez-Uribe, Andrés., International Conference on Evolvable Systems (2nd : 1998 : Lausanne, Switzerland)|isbn=978-3540649540|___location=Berlin|oclc=39655211}}</ref> MereGen,<ref name=":1">{{Cite book|title=Coupling of biological and electronic systems : proceedings of the 2nd Caesarium, Bonn, November 1-3, 2000|date=2002|publisher=Springer|others=Hoffmann, K.-H. (Karl-Heinz)|isbn=978-3540436997|___location=Berlin|oclc=49750250}}</ref> PACT XPP, Silicon Hive, Montium, Pleiades, Morphosys, and PiCoGA.<ref>Campi, F.; Toma, M.; Lodi, A.; Cappelli, A.; Canegallo, R.; Guerrieri, R., "A VLIW processor with reconfigurable instruction set for embedded applications", Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC. 2003 IEEE International, vol., no., pp. 250–491 vol. 1, 2003</ref> Such designs were feasible due to the constant progress of silicon technology that let complex designs be implemented on one chip. Some of these massively parallel reconfigurable computers were built primarily for special subdomains such as molecular evolution, neural or image processing. The world's first commercial reconfigurable computer, the Algotronix CHS2X4, was completed in 1991. It was not a commercial success, but was promising enough that [[Xilinx]] (the inventor of the [[FPGA|Field-Programmable Gate Array]], FPGA) bought the technology and hired the Algotronix staff.<ref>[http://www.algotronix.com/people/tom/album.html Algotronix History]</ref> Later machines enabled first demonstrations of scientific principles, such as the spontaneous spatial self-organisation of genetic coding with MereGen.<ref>{{Cite journal|last1=Füchslin|first1=Rudolf M.|last2=McCaskill|first2=John S.|date=2001-07-31|title=Evolutionary self-organization of cell-free genetic coding|journal=Proceedings of the National Academy of Sciences|language=en|volume=98|issue=16|pages=9185–9190|doi=10.1073/pnas.151253198|issn=0027-8424|pmc=55395|pmid=11470896|bibcode=2001PNAS...98.9185F|doi-access=free}}</ref>
==Theories==
|