Content deleted Content added
Tag: section blanking |
No edit summary |
||
Line 2:
The ''interval scheduling maximization problem'' (ISMP) is to find a largest compatible set, i.e., a set of non-overlapping intervals of maximum size. The goal here is to execute as many tasks as possible, that is, to maximize the [[throughput]]. It is equivalent to finding a [[Independent set (graph theory)|maximum independent set]] in an [[interval graph]].
A generalization of the problem considers ''k>1'' machines/resources. Here the goal is to find ''k'' compatible subsets whose union is the largest.
In an upgraded version of the problem, the intervals are partitioned into groups. A subset of intervals is ''compatible'' if no two intervals overlap, and moreover, no two intervals belong to the same group (i.e., the subset contains at most a single representative of each group). Each group of intervals corresponds to a single task, and represents several alternative intervals in which it can be executed.
|