Alpha recursion theory: Difference between revisions

Content deleted Content added
Bolding central concepts/article title
Tags: Mobile edit Mobile web edit
No edit summary
Line 1:
In [[recursion theory]], '''α recursion theory''' is a generalisation of [[recursion theory]] to subsets of [[admissible ordinal]]s <math>\alpha</math>. An admissible set is closed under <math>\Sigma_1(L_\alpha)</math> functions, where <math>L_\xi</math> denotes a rank of Godel's [[constructible hierarchy]]. <math>\alpha</math> is an admissible ordinal if <math>L_{\alpha}</math> is a model of [[Kripke–Platek set theory]]. In what follows <math>\alpha</math> is considered to be fixed.
 
The objects of study in <math>\alpha</math> recursion are subsets of <math>\alpha</math>. A set <!--math>A\subseteq L_α?--\alpha</math> is said to be <math>\alpha</math>-recursively-enumerable if it is <math> \Sigma_1</math> definable over <math>L_\alpha</math><!--Closestref>P. sourceKoepke, is[https://math.uni-bonn.de/people/koepke/Preprints/Ordinal_machines_and_admissible_recursion_theory.pdf Rathjen'sOrdinal "Collapsingmachines functionsand basedadmissible onrecursion recursivelytheory large(preprint)] ordinals:(p.315). AAccessed well–orderingOctober proof12, for KPM"?--2021</ref>. A is '''<math>\alpha</math>-recursive''' if both A and <math>\alpha \setminus A</math> (its relative complement in <math>\alpha</math>) are <math>\alpha</math>-recursively-enumerable. It's of note that <math>\alpha</math>-recursive sets are members of <math>L_{\alpha+1}</math> by definition of <math>L</math>.
 
Members of <math>L_\alpha</math> are called '''<math>\alpha</math>-finite''' and play a similar role to the finite numbers in classical recursion theory.