Remez algorithm: Difference between revisions

Content deleted Content added
Quintus V. (talk | contribs)
External links: there _is_ an implementation in Boost; here comes the correct link
Citation bot (talk | contribs)
Alter: pages. Add: bibcode, s2cid, issue, authors 1-1. Removed parameters. Formatted dashes. Some additions/deletions were parameter name changes. Upgrade ISBN10 to ISBN13. | Use this bot. Report bugs. | Suggested by Abductive | #UCB_toolbar
Line 16:
The result is called the polynomial of best approximation or the [[minimax approximation algorithm]].
 
A review of technicalities in implementing the Remez algorithm is given by W. Fraser.<ref>{{cite journal |doi=10.1145/321281.321282 |first=W. |last=Fraser |title=A Survey of Methods of Computing Minimax and Near-Minimax Polynomial Approximations for Functions of a Single Independent Variable |journal=J. ACM |volume=12 |pages=295295–314 |year=1965 |issue=3 |s2cid=2736060 }}</ref>
 
===On the choice of initialization===
Line 31:
:<math>\lambda_n(T; x) = \sum_{j = 1}^{n + 1} \left| l_j(x) \right|, \quad l_j(x) = \prod_{\stackrel{i = 1}{i \ne j}}^{n + 1} \frac{(x - t_i)}{(t_j - t_i)}.</math>
 
Theodore A. Kilgore,<ref>{{cite journal |doi=10.1016/0021-9045(78)90013-8 |first=T. A. |last=Kilgore |title=A characterization of the Lagrange interpolating projection with minimal Tchebycheff norm |journal=J. Approx. Theory |volume=24 |pages=273273–288 |year=1978 |issue=4 |doi-access=free }}</ref> Carl de Boor, and Allan Pinkus<ref>{{cite journal |doi=10.1016/0021-9045(78)90014-X |firstfirst1=C. |lastlast1=de Boor |first2=A. |last2=Pinkus |title=Proof of the conjectures of Bernstein and Erdös concerning the optimal nodes for polynomial interpolation |journal=[[Journal of Approximation Theory]] |volume=24 |pages=289289–303 |year=1978 |issue=4 |doi-access=free }}</ref> proved that there exists a unique ''t''<sub>''i''</sub> for each ''L''<sub>''n''</sub>, although not known explicitly for (ordinary) polynomials. Similarly, <math>\underline{\Lambda}_n(T) = \min_{-1 \le x \le 1} \lambda_n(T; x)</math>, and the optimality of a choice of nodes can be expressed as <math>\overline{\Lambda}_n - \underline{\Lambda}_n \ge 0.</math>
 
For Chebyshev nodes, which provides a suboptimal, but analytically explicit choice, the asymptotic behavior is known as<ref>{{cite journal |firstfirst1=F. W. |lastlast1=Luttmann |first2=T. J. |last2=Rivlin |title=Some numerical experiments in the theory of polynomial interpolation |journal=IBM J. Res. Dev. |volume=9 |pages=187187–191 |year=1965 |issue=3 |doi= 10.1147/rd.93.0187}}</ref>
 
:<math>\overline{\Lambda}_n(T) = \frac{2}{\pi} \log(n + 1) + \frac{2}{\pi}\left(\gamma + \log\frac{8}{\pi}\right) + \alpha_{n + 1}</math>
Line 45:
:<math>\overline{\Lambda}_n(T) \le \frac{2}{\pi} \log(n + 1) + 1</math>
 
Lev Brutman<ref>{{cite journal |doi=10.1137/0715046 |first=L. |last=Brutman |title=On the Lebesgue Function for Polynomial Interpolation |journal=SIAM J. Numer. Anal. |volume=15 |pages=694694–704 |year=1978 |issue=4 |bibcode=1978SJNA...15..694B }}</ref> obtained the bound for <math>n \ge 3</math>, and <math>\hat{T}</math> being the zeros of the expanded Chebyshev polynomials:
 
:<math>\overline{\Lambda}_n(\hat{T}) - \underline{\Lambda}_n(\hat{T}) < \overline{\Lambda}_3 - \frac{1}{6} \cot \frac{\pi}{8} + \frac{\pi}{64} \frac{1}{\sin^2(3\pi/16)} - \frac{2}{\pi}(\gamma - \log\pi)\approx 0.201.</math>
 
Rüdiger Günttner<ref>{{cite journal |doi=10.1137/0717043 |first=R. |last=Günttner |title=Evaluation of Lebesgue Constants |journal=SIAM J. Numer. Anal. |volume=17 |pages=512512–520 |year=1980 |issue=4 |bibcode=1980SJNA...17..512G }}</ref> obtained from a sharper estimate for <math>n \ge 40</math>
 
:<math>\overline{\Lambda}_n(\hat{T}) - \underline{\Lambda}_n(\hat{T}) < 0.0196.</math>