Multiplicative function: Difference between revisions

Content deleted Content added
Convolution: asterisk/star renders better in <math>
Line 63:
== Convolution ==
 
If ''f'' and ''g'' are two multiplicative functions, one defines a new multiplicative function ''<math>f'' * ''g''</math>, the ''[[Dirichlet convolution]]'' of ''f'' and ''g'', by
<math display="block"> (f \, * \, g)(n) = \sum_{d|n} f(d) \, g \left( \frac{n}{d} \right)</math>
where the sum extends over all positive divisors ''d'' of ''n''.
Line 70:
Relations among the multiplicative functions discussed above include:
 
* ''μ''<math>\mu * 1 = ''ε''\varepsilon</math> (the [[Möbius inversion formula]])
* <math>(''μ'' \mu \operatorname{Id<sub>''k''</sub>}_k) * \operatorname{Id<sub>''k''}_k = \varepsilon</submath> = ''ε'' (generalized Möbius inversion)
* <math>\varphi</math> * 1 = \operatorname{Id}</math>
* ''<math>d'' = 1 * 1</math>
* ''σ''<math>\sigma = \operatorname{Id} * 1 = <math>\varphi</math> * ''d''</math>
* <math>\sigma_k = \operatorname{Id}_k * 1</math>
* ''σ''<sub>''k''</sub> = Id<sub>''k''</sub> * 1
* <math>\operatorname{Id} = <math>\varphi</math> * 1 = ''σ''\sigma * ''μ''\mu</math>
* <math>\operatorname{Id}_k = \sigma_k * \mu</math>
* Id<sub>''k''</sub> = ''σ''<sub>''k''</sub> * ''μ''
 
The Dirichlet convolution can be defined for general arithmetic functions, and yields a ring structure, the [[Dirichlet ring]].