Subnormal operator: Difference between revisions

Content deleted Content added
Line 57:
Given a subnormal operator ''A'', its normal extension ''B'' is not unique. For example, let ''A'' be the unilateral shift, on ''l''<sup>2</sup>('''N'''). One normal extension is the bilateral shift ''B'' on ''l''<sup>2</sup>('''Z''') defined by
 
:<math>B (\cdotsldots, a_{-1}, {\hat a_0}, a_1, \cdotsldots) = (\cdotsldots, {\hat a_{-1}}, a_0, a_1, \cdotsldots),</math>
 
where ˆ denotes the zero-th position. ''B'' can be expressed in terms of the operator matrix
Line 70:
 
:<math>
B' (\cdotsldots, a_{-2}, a_{-1}, {\hat a_0}, a_1, a_2, \cdotsldots) = (\cdotsldots, - a_{-2}, {\hat a_{-1}}, a_0, a_1, a_2, \cdotsldots).
</math>