Reflection theorem: Difference between revisions

Content deleted Content added
Adding short description: "One of several theorems linking the sizes of different ideal class groups" (Shortdesc helper)
Amend hatnote-like text (WP:HATNOTE)
 
Line 1:
{{short description|One of several theorems linking the sizes of different ideal class groups}}
:''{{For |reflection principles in set theory, see [[reflection|Reflection principle]].''}}
{{Confusing|article|date=February 2010}}
:''For reflection principles in set theory, see [[reflection principle]].''
 
In [[algebraic number theory]], a '''reflection theorem''' or '''Spiegelungssatz''' ([[German language|German]] for ''reflection theorem'' – see ''[[Spiegel (disambiguation)|Spiegel]]'' and ''[[Satz (disambiguation)|Satz]]'') is one of a collection of theorems linking the sizes of different [[ideal class group]]s (or [[ray class group]]s), or the sizes of different [[isotypic component]]s of a class group. The original example is due to [[Ernst Kummer|Ernst Eduard Kummer]], who showed that the class number of the [[cyclotomic field]] <math>\mathbb{Q} \left( \zeta_p \right)</math>, with ''p'' a prime number, will be divisible by ''p'' if the class number of the maximal real subfield <math>\mathbb{Q} \left( \zeta_p \right)^{+}</math> is. Another example is due to Scholz.<ref>A. Scholz, Uber die Beziehung der Klassenzahlen quadratischer Korper zueinander, ''J. reine angew. Math.'', '''166''' (1932), 201-203.</ref> A simplified version of his theorem states that if 3 divides the class number of a [[real quadratic field]] <math>\mathbb{Q} \left( \sqrt{d} \right)</math>, then 3 also divides the class number of the [[imaginary quadratic field]] <math>\mathbb{Q} \left( \sqrt{-3d} \right)</math>.