Content deleted Content added
mNo edit summary |
No edit summary |
||
Line 41:
It should be pointed out here that the “pseudo-BEMD” method is not limited to only one-spatial dimension; rather, it can be applied to data of any number of spatial-temporal dimensions. Since the spatial structure is essentially determined by timescales of the variability of a physical quantity at each ___location and the decomposition is completely based on the characteristics of individual time series at each spatial ___location, there is no assumption of spatial coherent structures of this physical quantity. When a coherent spatial structure emerges, it reflects better the physical processes that drive the evolution of the physical quantity on the timescale of each component. Therefore, we expect this method to have significant applications in spatial-temporal data analysis.
To design a pseudo-BEMD algorithm the key step is to translate the algorithm of the 1D [[Hilbert huang transform|EMD]] into a Bi-dimensional Empirical Mode Decomposition (BEMD) and further extend the algorithm to three or more dimensions which is similar to the BEMD by extending the procedure on successive dimensions. For a 3D data cube of <math>i
Mathematically let us represent a 2D signal in the form of
:<math>
|