Content deleted Content added
Citation bot (talk | contribs) Alter: template type. Add: doi, publisher, year, chapter, title, chapter-url, authors 1-1. Removed or converted URL. Changed bare reference to CS1/2. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by BrownHairedGirl | Linked from User:BrownHairedGirl/Articles_with_bare_links | #UCB_webform_linked 321/2197 |
m →Definition: \ |
||
Line 13:
Primitive or "basic" functions:
#'''Constant functions C{{su|b=n|p=k}}''': For each natural number <math>n\,</math> and every <math>k\,</math><br /> <math>C_n^k(x_1,\ldots,x_k) \ \stackrel{\mathrm{def}}{=}\ n</math><br />Alternative definitions use instead a '''zero function''' as a primitive function that always returns zero, and built the constant functions from the zero function, the successor function and the composition operator.
# '''Successor function S:'''<br /> <math>S(x) \ \stackrel{\mathrm{def}}{=}\ x + 1\,</math>
# '''Projection function''' <math>P_i^k</math> (also called the '''Identity function'''): For all natural numbers <math>i, k</math> such that <math>1\le i\le k</math>:<br /> <math>P_i^k(x_1,\ldots,x_k) \ \stackrel{\mathrm{def}}{=}\ x_i \, .</math>
Operators (the [[___domain of a function]] defined by an operator is the set of the values of the arguments such that every function application that must be done during the computation provides a well-defined result):
# '''Composition operator''' <math>\circ\,</math> (also called the '''substitution operator'''): Given an m-ary function <math>h(x_1,\ldots,x_m)\,</math> and m k-ary functions <math>g_1(x_1,\ldots,x_k),\ldots,g_m(x_1,\ldots, x_k)</math>:<br /> <math>h \circ (g_1, \ldots, g_m) \ \stackrel{\mathrm{def}}{=}\ f, \quad\text{where}\quad f(x_1,\ldots,x_k) = h(g_1(x_1,\ldots,x_k),\ldots,g_m(x_1,\ldots,x_k)).</math><br />This means that <math>f(x_1,\ldots,x_k)</math> is defined only if <math>g_1(x_1,\ldots,x_k),\ldots, g_m(x_1,\ldots,x_k),</math> and <math>h(g_1(x_1,\ldots,x_k),\ldots,g_m(x_1,\ldots,x_k))</math> are all defined.
# '''Primitive recursion operator'''
\rho(g, h) &\ \stackrel{\mathrm{def}}{=}\ f \quad\text{where the k+1 -ary function } f \text{ is defined by}\\
f(0,x_1,\ldots,x_k) &= g(x_1,\ldots,x_k) \\
f(S(y),x_1,\ldots,x_k) &= h(y,f(y,x_1,\ldots,x_k),x_1,\ldots,x_k)\,.\end{align}</math><br />This means that <math>f(y,x_1,\ldots,x_k)</math> is defined only if <math>g(x_1,\ldots,x_k)</math> and <math>h(z,f(z,x_1,\ldots,x_k),x_1,\ldots,x_k)</math> are defined for all <math>z<y.</math>
#'''Minimization operator'''
\mu(f)(x_1, \ldots, x_k) = z \stackrel{\mathrm{def}}{\iff}\ f(i, x_1, \ldots, x_k)&>0 \quad \text{for}\quad i=0, \ldots, z-1 \quad\text{and}\\
f(z, x_1, \ldots, x_k)&=0\quad
|