Locally testable code: Difference between revisions

Content deleted Content added
Limits: Edited reference to include links on author names Irit Dinur.Shai Evra, Ron Livne, Alexander Lubotzky, Shahar Mozes
Edited from "a preprint has reported" to "two preprints have reported" to include work of Pavel Panteleev and Gleb Kalachev
Line 29:
The next nearly linear goal is linear up to a [[polylogarithmic]] factor; <math>n=\text{poly}(\log k)*k</math>. Nobody has yet to come up with a linearly testable code that satisfies this constraint.<ref name=shortLTC/>
 
In November 2021 two preprints have reported<ref>{{Cite journal|last=Panteleev|first=Pavel|last2=Kalachev|first2=Gleb|date=2021-11-05|title=Asymptotically Good Quantum and Locally Testable Classical LDPC Codes|url=http://arxiv.org/abs/2111.03654|journal=arXiv:2111.03654 [quant-ph]}}</ref><ref>{{Cite journal|last=Dinur|first=Irit|author-link=Irit Dinur|last2=Evra|first2=Shai|author-link2=Shai Evra|last3=Livne|first3=Ron|last4=Lubotzky|first4=Alexander|author-link4=Alexander Lubotzky|last5=Mozes|first5=Shahar|author-link5=Shahar Mozes|date=2021-11-08|title=Locally Testable Codes with constant rate, distance, and locality|url=http://arxiv.org/abs/2111.04808|journal=arXiv:2111.04808 [cs, math]}}</ref><ref>{{Cite web|last=Rorvig|first=Mordechai|date=2021-11-24|title=Researchers Defeat Randomness to Create Ideal Code|url=https://www.quantamagazine.org/researchers-defeat-randomness-to-create-ideal-code-20211124/|url-status=live|access-date=2021-11-24|website=[[Quanta Magazine]]|language=en}}</ref> the first polynomial-time construction of "<math>c^3</math>-LTCs" namely locally testable codes with constant rate <math>r</math>, constant distance <math>\delta</math> and constant locality <math>q</math>.