Content deleted Content added
No edit summary |
No edit summary |
||
Line 1:
{{AfC submission|t||ts=20211127234938|u=Lepsvera|ns=118|demo=}}<!-- Important, do not remove this line before article has been created. -->
Line 8 ⟶ 10:
Very informally, hypergraph regularity lemma decomposes any given <nowiki><math> k <
On the other hand, hypergraph counting lemma estimates the number of hypergraphs of given isomorphism class in some collections of the random-like parts.
This is an extension of Szemerédi's regularity lemma that decomposes any given graph into pseudorandom blocks, namely <nowiki><math> \varepsilon <
Line 31 ⟶ 33:
\begin{itemize}
\item <nowiki><math> K_j^{(k)} <
\item <nowiki><math> \mathcal{G}^{(j)} <
\item <nowiki><math> \mathcal{K}_j(\mathcal{G}^{(i)}) <
\end{itemize}
Line 44 ⟶ 46:
\begin{definition}[Relative density]
For <nowiki><math> j \geq 3 <
\begin{equation*}
Line 55 ⟶ 57:
The following is the appropriate notion of pseudorandomness that the regularity method will use. Informally, by this concept of regularity, <nowiki><math> j-1 <
\begin{definition}
Suppose <nowiki><math> \delta_j, d_j <
\begin{equation*}
Line 68 ⟶ 70:
\end{equation*}
we have <nowiki><math> d(\mathcal{G}^{(j)} \vert \mathbf{Q}^{(j-1)}) = d_j \pm \delta_j <
\end{definition}
Roughly speaking, following describes the pseudorandom blocks into which the hypergraph regularity lemma decomposes any large enough hypergraph. In Szemerédi regularity 2-edges are regularized versus 1-edges (vertices). In this generalized notion, <nowiki><math> j <
\begin{definition}
An <nowiki><math> (l,h) <
\begin{enumerate}
\item For each <nowiki><math> 1 \leq i_1 < i_2 \leq l <
\item For each <nowiki><math> 3 \leq j \leq h <
\end{enumerate}
Line 91 ⟶ 93:
The following describes the equitable partition that the hypergraph regularity lemma will induce. The <nowiki><math> (\mu, \delta, \mathbf{d}, r) <
\begin{definition}
Let <nowiki><math> \mu > 0 <
\begin{enumerate}
\item <nowiki><math> \mathcal{P}^{(1)} = \{V_i \colon i \in [a_1]\} <
\item <nowiki><math> \mathcal{P}^{(j)} <
<nowiki><math> \mathcal{K}_j(\cup_{i=1}^jP_i{(j-1)}) \neq \emptyset <
\item For all but at most <nowiki><math> \mu n^k <
\end{enumerate}
Line 116 ⟶ 118:
\begin{definition}
We say that a <nowiki><math> k <
<nowiki><math> K <
Line 127 ⟶ 129:
\begin{theorem}[Hypergraph regularity lemma]
For all positive real <nowiki><math> \mu <
\begin{equation*}
Line 135 ⟶ 137:
\end{equation*}
for <nowiki><math> j = 2, \ldots, k-1 <
there exists <nowiki><math> T_0 <
\begin{enumerate}
\item <nowiki><math> \mathcal{P} <
\item <nowiki><math> \mathcal{H}^{(k)} <
\end{enumerate}
Line 154 ⟶ 156:
\begin{theorem}[Hypergraph counting lemma]
For all integers <nowiki><math> 2 \leq k \leq l <
<nowiki><math> \forall \gamma > 0 \; \; \forall d_k > 0 \; \; \exists \delta_k > 0 \;\; \forall d_{k-1} > 0 \; \; \exists \delta_{k-1} > 0 \; \cdots \; \forall d_2 > 0 \; \; \exists \delta_2>0 <
if <nowiki><math> \mathbf{G} = \{ \mathcal{G}^{(j)}\}_{j=1}^k <
\begin{equation*}
Line 175 ⟶ 177:
The main application through which most others follow is the hypergraph removal lemma, which roughly states that given fixed <nowiki><math> \mathcal{F}^{(k)} <
\begin{theorem}[Hypergraph removal lemma]
For all <nowiki><math> l \geq k \geq 2 <
\end{theorem}
One of the original motivations for graph regularity method was to prove a Szemerédi's theorem, which states that every dense subset of <nowiki><math> \mathbb{Z} <
Line 191 ⟶ 193:
This theorem roughly implies that any dense subset of <nowiki><math> \ZZ^d <
\begin{theorem}[Furstenberg and Katznelson]
Let <nowiki><math> T <
Moreover, if <nowiki><math> T \subset [-t; t]^d <
\end{theorem}
Line 209 ⟶ 211:
\begin{theorem}[Tengan, Tokushige, V.R., and M.S]
Let <nowiki><math> A <
In other words, there are some <nowiki><math> \mathbf{r}, \mathbf{u} \in A^M <
\end{theorem}
|