Graph algebra: Difference between revisions

Content deleted Content added
OAbot (talk | contribs)
m Open access bot: doi added to citation with #oabot.
If you're going to move to short-form, at least do it properly (the previous version was LDR, not short-form). Note the sources/works cited are now back in alphabetical order, as they should be.
Line 1:
{{about|the mathematical concept of Graph Algebras|"Graph Algebra" as used in the social sciences|Graph algebra (social sciences)}}
{{Use shortened footnotes|date=May 2021}}
 
__NOTOC__
In [[mathematics]], especially in the fields of [[universal algebra]] and [[graph theory]], a '''graph algebra''' is a way of giving a [[directed graph]] an [[algebraic structure]]. It was introduced by McNulty and Shallon,{{rsfn|McNultyShallon1983McNulty|Shallon|1983|loc=[https://archive.org/details/universalalgebra0000unse/page/206 pp. 206–231]}} and has seen many uses in the field of universal algebra since then.
 
== Definition ==
Line 10:
 
== Applications ==
This notion has made it possible to use the methods of graph theory in universal algebra and several other directions of discrete mathematics and computer science. Graph algebras have been used, for example, in constructions concerning dualities,{{rsfn|DaveyETAL2000Davey|Idziak|Lampe|McNulty|2000|pp=145–172}} [[equational theory|equational theories]],{{rsfn|Pöschel1989Pöschel|1989|pp=273–282}} [[flatness (systems theory)|flatness]],{{rsfn|Delić2001Delić|2001|pp=453–469}} [[groupoid (algebra)|groupoid]] [[ring (mathematics)|rings]],{{rsfn|Lee1991Lee|1991|pp=117–121}} [[topology|topologies]],{{rsfn|Lee|1988|Lee1988pp=147–156}} [[variety (universal algebra)|varieties]],{{rsfn|Oates-Williams1984Williams|1984|pp=175–177}} [[finite state automata]],{{rsfn|KelarevMillerSokratova2005Kelarev|Miller|Sokratova|2005|pp=46–54}} [[finite -state machine]]s,{{rsfn|Kelarev|Sokratova|2003|KelarevSokratova2003pp=31–43}}
tree languages and [[tree automata]],{{rsfn|KelarevSokratova2001Kelarev|Sokratova|2001|pp=305–311}} etc.
 
== See also ==
Line 17:
* [[Incidence algebra]]
* [[Path algebra]]
 
==Citations==
{{Reflist|20em}}
 
==Works cited==
{{refbegin|35em}}
*{{Cite journal | title = Dualizability and graph algebras
{{reflist|refs=
| last1 = Davey | first1 = Brian A.
<ref name=McNultyShallon1983>{{Cite book |last1=McNulty |first1=George F. |last2=Shallon |first2=Caroline R. |year=1983 |chapter=Inherently nonfinitely based finite algebras |editor-last1=Freese |editor-first1=Ralph S. |editor-last2=Garcia |editor-first2=Octavio C. |title=Universal algebra and lattice theory (Puebla, 1982) |volume=1004 |series=Lecture Notes in Math. |___location=Berlin, New York City |publisher=[[Springer-Verlag]] |at=[https://archive.org/details/universalalgebra0000unse/page/206 pp. 206–231] |isbn=9783540123293 |doi=10.1007/BFb0063439 |hdl=10338.dmlcz/102157 |mr=716184 |hdl-access=free |url=https://archive.org/details/universalalgebra0000unse |via=[[Internet Archive]]}}</ref>
| last2 = Idziak | first2 = Pawel M.
 
| last3 = Lampe | first3 = William A.
<ref name=DaveyETAL2000>{{Cite journal |last1=Davey | first1=Brian A. |last2=Idziak |first2=Pawel M. |last3=Lampe |first3=William A. |last4=McNulty |first4=George F. |date=2000 |title=Dualizability and graph algebras |journal=[[Discrete Mathematics (journal)|Discrete Mathematics]] |volume=214 |issue=1 |pages=145–172 |issn=0012-365X |doi=10.1016/S0012-365X(99)00225-3 |mr=1743633 }}</ref>
| last4 = McNulty | first4 = George F.
 
| journal = [[Discrete Mathematics (journal)|Discrete Mathematics]]
<ref name=Pöschel1989>{{Cite journal |last=Pöschel |first=R. |date=1989 |title=The equational logic for graph algebras |journal=Z. Math. Logik Grundlag. Math. |volume=35 |issue=3 |pages=273–282 |doi=10.1002/malq.19890350311 |mr=1000970}}</ref>
| year = 2000 | volume = 214 | issue = 1 | pages = 145–172
 
| doi = 10.1016/S0012-365X(99)00225-3 | issn = 0012-365X | mr = 1743633
<ref name=Delić2001>{{Cite journal |last=Delić |first=Dejan |date=2001 |title=Finite bases for flat graph algebras |journal=Journal of Algebra |volume=246 |issue=1 |pages=453–469 |issn=0021-8693 |doi=10.1006/jabr.2001.8947 |mr=1872631|doi-access=free }}</ref>
}}
 
*{{Cite journal | title = Finite bases for flat graph algebras
<ref name=Lee1991>{{Cite journal |last=Lee |first=S.-M. |date=1991 |title=Simple graph algebras and simple rings |journal=Southeast Asian Bull. Math. |volume=15 |issue=2 |pages=117–121 |issn=0129-2021 |mr=1145431}}</ref>
| last = Delić | first = Dejan
 
| journal = Journal of Algebra
<ref name=Lee1988>{{Cite journal |last=Lee |first=S.-M. |date=1988 |title=Graph algebras which admit only discrete topologies |journal=Congr. Numer. |volume=64 |pages=147–156 |issn=1736-6046 |mr=0988675}}</ref>
| year = 2001 | volume = 246 | issue = 1 | pages = 453–469
 
| doi = 10.1006/jabr.2001.8947 | issn = 0021-8693 | mr = 1872631
<ref name=Oates-Williams1984>{{Cite journal |last=Oates-Williams |first=Sheila|author-link=Sheila Oates Williams |date=1984 |title=On the variety generated by Murskiĭ's algebra |journal=Algebra Universalis |volume=18 |issue=2 |pages=175–177 |issn=0002-5240 |doi=10.1007/BF01198526 |mr=743465 |s2cid=121598599}}</ref>
| doi-access = free
 
}}
<ref name=KelarevMillerSokratova2005>{{Cite journal |last1=Kelarev |first1=A.V. |last2=Miller |first2=M. | last3=Sokratova |first3=O.V. |date=2005 |title=Languages recognized by two-sided automata of graphs |journal=Proc. Estonian Akademy of Science |volume=54 |issue=1 |pages=46–54 |issn=1736-6046 |mr=2126358}}</ref>
*{{Cite journal | title = Languages recognized by two-sided automata of graphs
 
| last1 = Kelarev | first1 = A.V.
<ref name=KelarevSokratova2003>{{Cite journal |last1=Kelarev |first1=A.V. |last2=Sokratova |first2=O.V. |date=2003 |title=On congruences of automata defined by directed graphs |journal=Theoretical Computer Science |volume=301 |issue=1–3 |pages=31–43 |doi=10.1016/S0304-3975(02)00544-3 |issn=0304-3975 |mr=1975219 |url=https://eprints.utas.edu.au/157/1/congruences.pdf }}</ref>
| last2 = Miller | first2 = M.
| last3 = Sokratova | first3 = O.V.
| journal = Proc. Estonian Akademy of Science
| year = 2005 | volume = 54 | issue = 1 | pages = 46–54
| issn = 1736-6046 | mr = 2126358
}}
*{{Cite journal | title = Directed graphs and syntactic algebras of tree languages
| last1 = Kelarev | first1 = A.V.
| last2 = Sokratova | first2 = O.V.
| journal = J. Automata, Languages & Combinatorics
| year = 2001 | volume = 6 | issue = 3 | pages = 305–311
| issn = 1430-189X | mr = 1879773
}}
*{{Cite journal | title = On congruences of automata defined by directed graphs
| last1 = Kelarev | first1 = A.V.
| last2 = Sokratova | first2 = O.V.
| journal = Theoretical Computer Science
| year = 2003 | volume = 301 | issue = 1–3 | pages = 31–43
| url = https://eprints.utas.edu.au/157/1/congruences.pdf
| doi = 10.1016/S0304-3975(02)00544-3 | issn = 0304-3975 | mr = 1975219
}}
*{{Cite journal | title = Graph algebras which admit only discrete topologies
| last = Lee | first = S.-M.
| journal = Congr. Numer
| year = 1988 | volume = 64 | pages = 147–156
| issn = 1736-6046 | mr = 0988675
}}
*{{Cite journal | title = Simple graph algebras and simple rings
| last = Lee | first = S.-M.
| journal = Southeast Asian Bull. Math
| year = 1991 | volume = 15 | issue = 2 | pages = 117–121
| issn = 0129-2021 | mr = 1145431
}}
*{{Cite book| chapter = Inherently nonfinitely based finite algebras
| last1 = McNulty | first1 = George F.
| last2 = Shallon | first2 = Caroline R.
| year = 1983
| title = Universal algebra and lattice theory (Puebla, 1982)
| editor1-last = Freese | editor1-first = Ralph S.
| editor2-last = Garcia | editor2-first = Octavio C.
| publisher = [[Springer-Verlag]] | ___location = Berlin, New York City
| volume = 1004 | series = Lecture Notes in Math.
| at = [https://archive.org/details/universalalgebra0000unse/page/206 pp. 206–231]
| url = https://archive.org/details/universalalgebra0000unse | via = [[Internet Archive]]
| doi = 10.1007/BFb0063439 | hdl = 10338.dmlcz/102157 | isbn = 978-354012329-3 | mr = 716184
| hdl-access = free
}}
*{{Cite journal | title = On the variety generated by Murskiĭ's algebra
| last = Oates-Williams | first = Sheila
| author-link = Sheila Oates Williams
| journal = Algebra Universalis
| year = 1984 | volume = 18 | issue = 2 | pages = 175–177
| doi = 10.1007/BF01198526 | issn = 0002-5240 | mr = 743465 | s2cid = 121598599
}}
*{{Cite journal | title = The equational logic for graph algebras
| last = Pöschel | first = R.
| journal = Z. Math. Logik Grundlag. Math
| year = 1989 | volume = 35 | issue = 3 | pages = 273–282
| doi = 10.1002/malq.19890350311 | mr = 1000970
}}
{{refend}}
 
{{Reflist|30em}}
<ref name=KelarevSokratova2001>{{Cite journal |last1=Kelarev |first1=A.V. |last2=Sokratova |first2=O.V. |date=2001 |title=Directed graphs and syntactic algebras of tree languages |journal=J. Automata, Languages & Combinatorics |volume=6 |issue=3 |pages=305–311 |issn=1430-189X |mr=1879773}}</ref>
}}{{refend}}
 
==Further reading==
{{refbegin}}
*{{Cite book| title = Graph Algebras and Automata
* {{Cite book |last=Kelarev |first=A.V. |date=2003 |title=''Graph Algebras and Automata'' |place=New York City |publisher=[[Marcel Dekker]] |isbn=0-8247-4708-9 |mr=2064147 |url-access=registration |via=[[Internet Archive]] |url=https://archive.org/details/graphalgebrasaut0000kela}}
| last = Kelarev | first = A.V. | year = 2003
* {{cite journal |last1=Kiss |first1=E.W. |last2=Pöschel |first2=R. |last3=Pröhle |first3=P. |date=1990 |title=Subvarieties of varieties generated by graph algebras |journal=Acta Sci. Math. |volume=54 |issue=1–2 |pages=57–75 |mr=1073419}}
| publisher = [[Marcel Dekker]] | place = New York City
* {{Cite book |last=Raeburn |first=Iain |date=2005 |title=Graph algebras |publisher=[[American Mathematical Society]] |isbn=9780821836606}}
| url = https://archive.org/details/graphalgebrasaut0000kela | url-access = registration | via = [[Internet Archive]]
| isbn = 0-8247-4708-9 | mr = 2064147
| ref = none
}}
*{{cite journal | title = Subvarieties of varieties generated by graph algebras
| last1 = Kiss | first1 = E.W.
| last2 = Pöschel | first2 = R.
| last3 = Pröhle | first3 = P.
| journal = Acta Sci. Math
| year = 1990 | volume = 54 | issue = 1–2 | pages = 57–75
| mr = 1073419
| ref = none
}}
*{{Cite book| title = Graph algebras
| last = Raeburn | first = Iain | year = 2005
| publisher = [[American Mathematical Society]]
| isbn = 978-082183660-6
| ref = none
}}
{{refend}}