Content deleted Content added
Line 66:
: <math> M \times \,^{\prime\prime} 0 \; 0 \; 1 \; 1 \; 1 \; 1 \; 1 \; 0 \,^{\prime\prime} = M \times (2^5 + 2^4 + 2^3 + 2^2 + 2^1) = M \times 62 </math>
where M is the multiplicand. The number of operations can be reduced to two by rewriting the same as
: <math> M \times \,^{\prime\prime} 0 \; 1 \;
In fact, it can be shown that any sequence of 1s in a binary number can be broken into the difference of two binary numbers:
Line 80:
Booth's algorithm follows this old scheme by performing an addition when it encounters the first digit of a block of ones (0 1) and subtraction when it encounters the end of the block (1 0). This works for a negative multiplier as well. When the ones in a multiplier are grouped into long blocks, Booth's algorithm performs fewer additions and subtractions than the normal multiplication algorithm.
== See also ==
|