Content deleted Content added
m →See also: use div col |
copy edit |
||
Line 3:
Referred to as the "final frontier of analytic capabilities,"<ref>{{Cite web |url=https://www.globys.com/2013/06/gartner-terms-prescriptive-analytics-%E2%80%9Cfinal-frontier%E2%80%9D-analytic-capabilities |title=Archived copy |access-date=2014-10-29 |archive-url=https://web.archive.org/web/20160402140918/http://globys.com/2013/06/gartner-terms-prescriptive-analytics-%E2%80%9Cfinal-frontier%E2%80%9D-analytic-capabilities |archive-date=2016-04-02 |url-status=dead }}</ref> prescriptive analytics entails the application of [[mathematical sciences|mathematical]] and [[computational science]]s and suggests decision options to take advantage of the results of descriptive and predictive analytics. The first stage of business analytics is descriptive analytics, which still accounts for the majority of all business analytics today.<ref>{{cite journal|last=Davenport, Tom |title=The three '..tives' of business analytics; predictive, prescriptive and descriptive|journal=CIO Enterprise Forum|date=November 2012}}</ref> Descriptive analytics looks at past performance and understands that performance by mining historical data to look for the reasons behind past success or failure. Most management reporting – such as [[sales]], [[marketing]], [[Business operations|operations]], and [[finance]] – uses this type of post-mortem analysis.
[[File:Three Phases of Analytics.png|thumb|
Prescriptive analytics not only anticipates what will happen and when it will happen, but also why it will happen<!-- There is no evidence nor citation supporting this statement. Furthermore, if prescriptive analytics analytics "not only anticipates what will happen and when it will happen, but also why it will happen, then what is the role of predictive modelling, forecasting and causal modelling? -->. Further, prescriptive analytics suggests decision options on how to take advantage of a future opportunity or mitigate a future risk and shows the implication of each decision option. Prescriptive analytics can continually take in new data to re-predict and re-prescribe, thus automatically improving prediction accuracy<!-- This lacks evidence and supporting citation. It does not follow that prediction accuracy improves as a result of re-predicting. --> and prescribing better decision options. Prescriptive analytics ingests hybrid data, a combination of structured (numbers, categories) and unstructured data (videos, images, sounds, texts), and business rules to predict what lies ahead and to prescribe how to take advantage of this predicted future without compromising other priorities.<ref>{{cite journal |last1=Riabacke |first1=Mona |last2=Danielson |first2=Mats |last3=Ekenberg |first3=Love |title=State-of-the-Art Prescriptive Criteria Weight Elicitation |journal=Advances in Decision Sciences |date=30 December 2012 |volume=2012 |pages=1–24 |doi=10.1155/2012/276584 |doi-access=free }}</ref>
Line 9:
All three phases of analytics can be performed through professional services or technology or a combination. In order to scale, prescriptive analytics technologies need to be adaptive to take into account the growing volume, velocity, and variety of data that most mission critical processes and their environments may produce.
One criticism of prescriptive analytics is that its distinction from [[predictive analytics]] is ill-defined and therefore ill-conceived.<ref>{{cite journal|last=Bill Vorhies|url=http://www.predictiveanalyticsworld.com/patimes/prescriptive-versus-predictive-analytics-distinction-without-difference/ |title=Prescriptive versus Predictive Analytics – A Distinction without a Difference?|journal=Predictive Analytics Times|date=November 2014}}</ref> [[File:Components of Prescriptive Analytics.png|thumb|
==History==
Line 17:
==Applications in Oil and Gas==
[[File:Key Questions Prescriptive Analytics software answers for oil and gas producers.png|thumb|right
===Unconventional Resource Development===
[[File:Varied datasets.png|thumb|right
Prescriptive Analytics software can accurately predict production and prescribe optimal configurations of controllable drilling, completion, and production variables by modeling numerous internal and external variables simultaneously, regardless of source, structure, size, or format.<ref>{{cite journal |last=Basu, Mohan, Marshall, & McColpin |title=The Journey to Designer Wells |journal=Oil & Gas Investor |date=December 23, 2014}}</ref> Prescriptive analytics software can also provide decision options and show the impact of each decision option so the operations managers can proactively take appropriate actions, on time, to guarantee future exploration and production performance, and maximize the economic value of assets at every point over the course of their serviceable lifetimes.<ref>{{cite journal |last=Mohan, Daniel |title=Your Data Already Know What You Don't |journal=E&P Magazine |date=September 2014}}</ref>
Line 62:
==References==
{{reflist|2}}
==Further reading==
Line 90 ⟶ 89:
* Mohan, Daniel [http://www.epmag.com/item/Your-data-know-you-dont_137311/ "Your Data Already Know What You Don't"] Exploration & Production Magazine, September, 2014.
* van Rijmenam, Mark [https://datafloq.com/read/future-big-data-use-cases-prescriptive-analytics/668"The Future of Big Data? Three Use Cases of Prescriptive Analytics"] Datafloq, December 29, 2014.
{{refend}}
==External links==
|