Strong CP problem: Difference between revisions

Content deleted Content added
Rewrote the main body of the text to explain some of the details behind the problem and to present some additional proposed resolutions.
mNo edit summary
Line 28:
which changes the complex mass phase by <math>\theta' \rightarrow \theta'-\alpha</math> while leaving the kinetic terms unchanged. The transformation also changes the θ-term as <math>\theta \rightarrow \theta + \alpha</math> due to a change in the [[path integral formulation|path integral]] measure, an effect closely connected to the [[chiral anomaly]].
 
The theory would be CP invariant if one could eliminate both sources of CP violation through such a field redefinition. But this cannot be done unless <math>\theta = -\theta'</math>. This is because even under such field redefinitions, the combination <math>\theta'+ \theta \rightarrow (\theta'-\alpha) + (\theta + \alpha) = \theta'+\theta</math> remains unchanged. For example, the CP violation due to the mass term can be eliminated by picking <math>\alpha = \theta'</math>, but then all the CP violation goes to the θ-term which is now proportional to <math>\bar \theta</math>. If instead the {{theta}}θ-term is eliminated through a chiral transformation, then there will be a CP violating complex mass with a phase <math>\bar \theta</math>. Practically, it is usually useful to put all the CP violation into the θ-term and thus only deal with real masses.
 
In the Standard Model where one deals with six quarks whose masses are described by the [[Yukawa interaction|Yukawa matrices]] <math>Y_u</math> and <math>Y_d</math>, the physical CP violating angle is <math>\bar \theta = \theta - \arg \det(Y_u Y_d)</math>. Since the θ-term has no contributions to perturbation theory, all effects from strong CP violation is entirely non-perturbative. Notably, it gives rise to an [[neutron electric dipole moment]]<ref>{{cite book|first=Matthew D.|last=Schwartz|title=Quantum Field Theory and the Standard Model|publisher=Cambridge University Press|chapter=29|edition=9|page=612|isbn=9781107034730}}</ref>