Examples of vector spaces: Difference between revisions

Content deleted Content added
Trivial or zero vector space: A null space incidentally may or may not be 'the' zero space; but as concepts they indeed are different.
mNo edit summary
Line 76:
 
===Generalized coordinate space===
 
Let ''X'' be an arbitrary set. Consider the space of all functions from ''X'' to ''F'' which vanish on all but a finite number of points in ''X''. This space is a vector subspace of ''F''<sup>''X''</sup>, the space of all possible functions from ''X'' to ''F''. To see this, note that the union of two finite sets is finite, so that the sum of two functions in this space will still vanish outside a finite set.
 
Line 101 ⟶ 100:
 
==Field extensions==
Suppose ''K'' is a [[Field extension|subfield]] of ''F'' (cf. [[field extension]]). Then ''F'' can be regarded as a vector space over ''K'' by restricting scalar multiplication to elements in ''K'' (vector addition is defined as normal). The dimension of this vector space, if it exists,{{efn|Note that the resulting vector space may not have a basis in the absence the [[axiom of choice]].}} is called the ''degree'' of the extension. For example the [[complex number]]s '''C''' form a two-dimensional vector space over the real numbers '''R'''. Likewise, the [[real numbers]] '''R''' form a vector space over the [[rational number]]s '''Q''' which has (uncountably) infinite dimension, if a Hamel basis exists.{{efn|There are models of [[Zermelo-FraenkelZermelo–Fraenkel set theory|ZF]] without [[Axiom of choice|AC]] in which this is not the case.}}
 
If ''V'' is a vector space over ''F'' it may also be regarded as vector space over ''K''. The dimensions are related by the formula